
Hansl: a DSL for econometrics

Allin Cottrell
Department of Economics

Wake Forest University
Winston-Salem, NC, USA

cottrell@wfu.edu

ABSTRACT
This paper describes hansl, a language specifically tailored
to the domain of econometrics. We outline certain features
of econometrics and explain how these features mandate, or
at least make highly desirable, a form of language which
incorporates some quite specific data structures and syntac-
tical constructions.

CCS Concepts
•Applied computing→ Economics; •Software and its
engineering → Software usability;

Keywords
domain specific languages; econometrics

1. INTRODUCTION
Hansl (a recursive acronym: “hansl’s a neat scripting lan-

guage”) is the scripting language of gretl (gretl.sourceforge.
net), an open source econometrics package written in C and
licensed under the GNU GPL.

In this introduction we briefly describe both gretl and the
domain it serves. Section 2 goes on to describe the basic
computational task in econometrics (namely matrix manip-
ulation), while section 3 outlines some special features of the
econometrics domain which, we argue, mean that it is best
served by somewhat specific software—that is, not simply
software that is good at doing matrix computations in gen-
eral. Section 4 elaborates this point by reference to hansl in
particular, and section 5 offers a coda in which we discuss
the place of gretl and hansl in relation to both the desiderata
of econometrics and other software with which gretl may be
considered in competition.

Gretl comprises a large shared library, a command-line
client program and a GUI client program. It makes use of
several other free software libraries to support aspects of its
functionality (LAPACK, fftw, GTK, etc.). Gretl was entered
into version control on sourceforge.net in January 2000 and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RWDSL ’17, February 04 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4845-4/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3039895.3039896

has been under continuous active development since then. It
stands comparison with the major proprietary econometrics
packages, Stata and Eviews, and also with the major open-
source statistical software project, R. Besides the source code
distribution, gretl is available in binary form for MS Win-
dows, OS X and the major Linux distributions. The user
interface has been translated into 16 languages. Gretl is
documented in a User’s Guide of 300+ pages [3] and a Com-
mand Reference of 160+ pages [1]; a tutorial introduction
to hansl is also available [4].

To be clear, gretl is the program/package and hansl is the
scripting language it supports. In the case of R or Matlab, for
instance, it would make little sense to give different names
to the program and the language, since the program is ba-
sically just an interpreter for the language. Gretl, however,
comprises a full-featured graphical interface: its underlying
functionality (coded in C, as mentioned above) can be driven
either by hansl scripting or by the apparatus of menus, dia-
log boxes and so on. We try to ensure that almost everything
that can be done via hansl can also be done via the GUI,
and vice versa, but there are some exceptions (for example,
the Kalman filter, which is arguably too complex to permit
a usable GUI and is therefore accessible only via hansl).

Having introduced gretl, we move to econometrics. In
a broad sense, econometrics—basically, the empirical quan-
tification of economic concepts—dates back to the “Political
Arithmetick” of the 17th Century, as practiced by William
Petty, Gregory King and Charles Davenant (see for example
[8]). But econometrics as we know it today dates roughly
from the founding of the Econometric Society in 1930, and
the “probability approach” to the subject which is now ubiq-
uitous was first definitively set out by Trygve Haavelmo in
1944 [6].

The modern field of econometrics divides into Applied
Econometrics and Econometric Theory. The chief activity
in Applied Econometrics is the estimation of parameterized
economic models, mostly via the methods of Least Squares
(Ordinary and Generalized), Maximum Likelihood [5] and
the Generalized Method of Moments (GMM) [7]. Such anal-
yses are conducted across all the sub-fields of economics (la-
bor economics, health economics, macroeconomics, financial
economics, etc., etc.) in the service of, variously, forecasting,
policy analysis, testing of economic theories, and the mak-
ing of profit. Econometric theory is primarily concerned
with the assessment and development of estimators suitable
for use with socio-economic data; it is basically a branch of
mathematical statistics. While applied econometricians are
the primary users of econometric software theorists also have

recourse to software, for example in Monte Carlo simulation
to determine the properties of estimators whose expectations
or variances have no closed-form analytical expression.

2. BASIC ECONOMETRIC COMPUTATION
For the first couple of decades after the foundation of the

Econometric Society, econometric computation had to be
done manually, with the aid of mechanical calculators when
available. The ur-computation in econometrics (though to-
day just the tip of the iceberg) is the calculation of the least-

squares coefficient vector, β̂, in the context of a linear model.
Let y denote a column vector holding T observations on a
dependent variable of interest; let X denote a T × k ma-
trix of regressors or covariates that may explain or predict
y; let β denote a k-vector of unknown parameters; and let
u denote a T -vector of stochastic “disturbances” (the “error
term”). The classical linear model is

y = Xβ + u

If E(u|X) = 0 and X is of full column rank, an unbiased
estimator of β is given by

β̂ = (X ′X)−1X ′y

where the prime notation indicates matrix transposition. In
obtaining β̂, therefore, the main computational task is in-
version of the k × k symmetric matrix X ′X (or computing
a suitable decomposition of X ′X, such as Cholesky or QR,
which permits solution via back-substitution). Obtaining β̂
in this way is known as “running a regression.”

A point-estimate of β is, however, not very useful in itself;
we also require a measure of the uncertainty associated with
this estimate, namely the estimated variance matrix of β̂.
So long as the error term is independently and identically
distributed (iid), this is quite easily obtained as

V̂ar(β̂) = σ̂2(X ′X)−1

where σ̂2 = (T − k)−1û′û and û ≡ y −Xβ̂. (The elements
of û are known as residuals). The “standard errors” that are
routinely used in statistical inference based on regression
models are just the square roots of the diagonal elements of
this matrix. Again, inversion of X ′X is the main task.1

So far, so elementary, in econometric terms. We’re simply
making the point here that, at a certain level of abstraction,
econometric computation is just a matter of manipulating
vectors and matrices (multiplication, decomposition, inver-
sion, transposition, and so on). While we have illustrated by
reference to least squares, the same goes for more advanced
methods (Maximum Likelihood, GMM) that require nonlin-
ear optimization: the complexity is of course greater, but
in the end it (almost) all boils down to manipulating real
matrices.

It is therefore not surprising that econometricians—or at
least, those computer-savvy enough to do their own coding—
have turned to whatever matrix-oriented computer languages
were available to them. In the early days of mainframe com-
puting this primarily meant Fortran; at that time there was

1When the error term cannot be assumed to be iid, mat-
ters become more complicated: estimated variance matrices
that are “robust” in face of heteroskedasticity (non-constant
variance of the error term) and/or autocorrelation (non-zero
correlations between the elements of u) call for more expen-
sive computation.

no alternative to learning a low-level programming language
if you wanted to code an econometric estimator. Pioneer
econometricians were very happy to set aside their Marchant
calculators and learn Fortran, and there’s still a good deal
of useful Fortran code for econometrics “out there,” for ex-
ample in the netlib archive.

Some econometricians “of the old school” still prefer to do
their own coding in a low-level language (Fortran, C, C++,
Java) but it’s now more common for younger econometri-
cians to develop estimators using high-level matrix-oriented
languages such as Gauss or Matlab.2 Besides, they now have
another alternative, namely using a high-level language that
is specifically attuned to econometrics (not just to matrix
manipulation in general). This brings us to our main theme.

3. FEATURES OF ECONOMETRICS
There are two main aspects of econometrics which may

be taken as pointing to a need for a truly domain-specific
language: one is technical, and the other has to do with the
sociology of economics education and the economics profes-
sion.

3.1 Technical consideration: datasets
The data used in econometric analysis were introduced

above in abstract and generic terms as y (dependent vari-
able, T -vector) and X (T × k matrix of regressors or covari-
ates). A “dataset” is basically the union of y and X, along
with a good deal of metadata. Econometric datasets take
three main forms:

• cross-sectional: data on a set of “individuals” (in a
broad sense, meaning persons, countries, firms or what-
ever) at a given point in time or within a given period.
For example, data on wages, education levels and de-
mographic characteristics for a number of adults ac-
cording to a given year’s national census.

• time-series: data on a single “individual” over a num-
ber of successive time periods. For example, data on
several aspects of the US economy for each year, quar-
ter or month from 1960 to the present.

• panel data: measurements of the characteristics of a
set of individuals in each of a number of time periods.
For example, measures of the crime rate, and some
candidate factors for explaining the crime rate, in each
of several states or counties in the years 2000, 2005 and
2010.

If we think of a dataset as a big matrix, in an econo-
metric context there is an important practical need to keep
track of what the columns (and also the rows) of this ma-
trix represent, if we are to make any sense of regression re-
sults. For example, in a macroeconomic time-series dataset
the “columns” represent specific macroeconomic variables:
How are they defined? From what source are they derived?
What are their units of measurement? And the rows rep-
resent successive time periods: At what calendar date do
the observations start and end? At what frequency were the
data recorded?

2Gauss (www.aptec.com) was the pioneer in this area, and
was at one time very popular among econometricians, but
it seems to have been largely eclipsed by Matlab over recent
years.

In a purely cross-sectional dataset, the temporal questions
mentioned above, pertaining to the rows of the dataset, do
not apply, but the column-wise questions apply fully and
there may also be relevant row-wise questions. For example,
if the members of the cross section are identifiable by name
(countries, states, etc.) or by some sort of ID number, we
will want this information to be somehow associated with
the dataset rows.

Panel datasets pose special requirements in terms of meta-
data. If each variable occupies a single column in a big“data
matrix,” we need to keep track of the structure of that col-
umn. For instance, do we have 10 time-series observations
for Argentina followed by another 10 time-series observa-
tions for Belize, and so on—or what?

Moreover, in all datasets it will likely be convenient to be
able to refer to the columns (variables) by name.

Now of course, any half-way sophisticated programming
language will provide some means of associating metadata
with any chosen data. The pertinent question is how con-
venient it is for users to establish and read back such as-
sociations. There is a case for saying that software de-
signed for use in econometrics should build such associa-
tions in from the ground level. And this is what we find: in
special-purpose econometric software a dataset is typically
not a matrix as such; it is a richer structure, part or all of
which can be turned into a matrix proper on demand. This
represents a first duality in hansl (though not unique to
hansl), to which we will return below: the availability of the
“dataset” as a specific data structure, not equivalent to any
standard mathematical type, alongside computer represen-
tations of the standard mathematical types.

3.2 Sociology of econometrics
A few basic facts first. Undergraduates studying eco-

nomics are typically, if not universally, exposed to at least
once course in econometrics, covering at least the practice
and interpretation of least-squares regression. Graduate stu-
dents in economics are sure to be exposed to more advanced
treatments of the subject, likely involving Maximum Likeli-
hood estimation and GMM, simulation and so on. And those
employed as professional economists—whether in academia,
research institutes, government agencies, central banks, or
the corporate sector—are likely to find themselves using, or
possibly developing, econometric methods.3

As regards the teaching of econometrics, it obviously makes
sense to have undergraduate students work with reasonably
user-friendly software. (In many if not most cases there’s
no requirement that they have any prior programming ex-
perience.) However, there’s a widespread (and defensible)
view nowadays that it’s a waste of undergraduates’ time to
have them learn some elementary econometrics package—
be it ever so user-friendly—if that package will not support
the more advanced work they’ll be expected to do in grad-
uate school or in employment as an economist. Although
relatively few economics undergraduates continue to grad-
uate school in the subject, quite a number go straight into
employment in the corporate sector; and of course there’s a
premium on teaching “marketable skills” rather than dead-
end expertise.

In the early years of“user-friendly”econometric software—
in the era of IBM-clone PCs running DOS—the programs in

3Economic theorists in academia may steer clear of econo-
metrics, but not too many others.

question offered keyboard-interactive execution of a small
range of “canned” least-squares routines: open a dataset
from file; choose an estimator from a menu; choose a de-
pendent variable from a list; select the independent vari-
ables from a list; hit Enter; and the results were shown on-
screen. Insofar as such programs had a scripting language,
this amounted to no more than a “batch file” of commands
(corresponding to selections from the keyboard-controlled
menus), to be executed non-interactively. At that time there
was a clear disjunction between such programs and the soft-
ware that a serious budding econometrician might use to
develop an estimator—say, Gauss (first version for MS-DOS
released in 1984), or Fortran for hard-core coders.

Such a disjunction is basically no longer tolerated. Either
undergraduates have to learn a relatively sophisticated lan-
guage from the start (a difficult path, we would argue), or
else they learn a program which has an easy interface for
simpler tasks, but which supports greater sophistication via
a path that is not too hard to follow if they have the incentive
to do so. Here is the second duality which we will discuss
below: the languages of modern econometric software, in-
cluding hansl, offer easy (relatively unstructured) ways of
doing easy things while also providing means of doing ad-
vanced (non-easy) things as easily as reasonably possible,
but necessarily in a more structured way.

4. HANSL
And so to hansl the language itself. We will first examine

the way in which hansl implements and handles the two
“dualities” to which we alluded above.

As regards data structures the duality is between (a) the
dataset object (and its members, which are known as series)
and (b) other sorts of variables—in hansl, scalars, matrices,
strings, arrays and bundles. (The array type can hold ma-
trices, strings or bundles; the bundle type is explained in
section 4.3.) With regard to classes of statement the dis-
tinction is between commands on the one hand (easy for
beginners to use) and function calls plus assignment on the
other (more complex to learn but more flexible).

If we subtract, for the moment, datasets and their member
series, and also subtract commands, then what remains in
hansl is basically very similar to matrix-oriented languages
such as Mathematica or Matlab. For example, suppose we
have a T -vector y holding values of a dependent variable and
a T ×k matrix X holding values of k independent variables.
And suppose we want to compute (from scratch, without
using any built-in procedure that might be available) the

k-vector of coefficients β̂ that minimizes the sum of squared
residuals, as discussed in section 2. In Matlab we could do

b = inv(X’*X)*X’*y

while in hansl we could do

b = inv(X’X)*X’y

where the only difference is that hansl supports the prime
symbol as a binary operator (multiply the transpose of the
left operand into the right operand) where the context per-
mits, as well as the unary transpose operator. (In fact the
exact formulation in Matlab could be used in hansl, it just
wouldn’t be idiomatic.)

Another similarity between Matlab and hansl is that they
share a syntactical style with the bash shell: for instance

basic control flow is done via if . . . endif, where a closing
keyword is used and braces are not required to delimit the
set of statements subject to conditional execution.

Hansl is not a Matlab clone and there are numerous dif-
ferences if we delve a bit deeper, but we’re just making the
point that in respect of the manipulation of matrices (and for
that matter strings), hansl will look quite familiar to anyone
who has worked with Matlab or its open-source clone Octave.

4.1 Datasets, commands
Let us return to datasets, series and commands. First of

all, as mentioned above, a dataset is a structure containing
v ≥ 1 named series of a given length T along with various
items of metadata such as the character and source of the
data, descriptive labels for the series and so on. Gretl can
have at most one dataset “open” at any given time. The
usual way of opening a dataset is to read it from file (ei-
ther in gretl’s native format, or delimited text—e.g. comma-
separated values—or in any of several other supported for-
mats). It is also possible to create an artificial dataset and
populate it with random values for simulation purposes.

As noted above, one can think of a dataset as a big ma-
trix (plus metadata) and the series it comprises as (named)
columns of the matrix. The series are necessarily of the
same length (though some may be padded with “missing
values”) and homogeneous with respect to the unit of ob-
servation; that is, each row represents a given individual (in
cross-sectional data), a given period (in time-series data) or
a given tuple <individual, period> (in panel data). The se-
ries in a given dataset are also generally related in the sense
that one or more of them are taken as “dependent variables”
whose values we would like to explain or predict and one
or more are potential explanatory factors or predictors. To
give some sense of what a dataset involves in gretl, Exam-
ple 1 shows a portion of the header from a data file included
in the gretl package, containing macroeconomic time-series
data from the Eurozone.4

Once a dataset is loaded into memory, econometrics pro-
grams generally offer a set of commands (recall, as opposed
to function calls) that can be executed to carry out statis-
tical analysis of the data and display the results, as well as
commands to carry out ancillary tasks such as setting the
“sample range” for analysis (e.g. select a certain sub-period
for a time-series dataset, or select only the female respon-
dents in a cross-sectional earnings dataset).

We can illustrate with the most common task in econo-
metrics, estimation of a specified model via Ordinary Least
Squares (OLS). We noted above how you could do this in
“pure matrix mode”(just obtaining the vector of least-squares
coefficients). In “dataset mode” we might do something like

ols wage const gender education experience

Here ols is the command-word for OLS regression in hansl.
It must be followed by the name of the dependent variable
and the names of one or more independent variables. In
the example we include const (the built-in identifier for a
constant or y-intercept) and three possible determinants of
wage.5 The effect of executing this command will be to dis-
play the estimated coefficients on the independent variables

4Such data files can be gzip-compressed on demand, and the
actual data values can be stored in binary format to speed
the loading of large datasets.
5We suppose that we have in place a dataset comprising a

Example 1: Dataset header information

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gretldata SYSTEM "gretldata.dtd">

<gretldata version="1.3" name="AWM" frequency="4"
startobs="1970:1" endobs="1998:4"
type="time-series">

<description>Euro Area macroeconomic time series from
the Area Wide Model (AWM) dataset by Gabriel Fagan
et al. ...
<variables count="130">
<variable name="CAN"
label="Current Account Balance"
/>
<variable name="COMPR"
label="Commodity Prices (HWWA)"
/>
<variable name="D1"
label="Dummy Variable"
discrete="true"
/>
...
</variables>
<observations count="116" labels="false">
<obs>-517.9085 18.4 1 0 0 0 0 1.1733 ...</obs>
<obs>662.5996 18.6341 0 0 0 0 0 1.1654 ...</obs>

along with their estimated standard errors, t-statistics and
P -values, as well various statistics describing the goodness
of fit of the model and the like.

From a programming point of view, consider some aspects
of this (fairly typical) command invocation. For one thing,
the syntax is rather simple and relaxed (no commas, paren-
theses or other punctuation to worry about). For another,
there is no assignment—and there can’t be, since a command
does not return any value.

The first of these points means that use of commands
is easy for beginners to pick up but it’s also a limitation.
Note that the arguments following ols must be the names
of series, they can’t be arbitrary expressions. If you wanted
to include the square of experience in the model to allow
for nonlinearity you could not do this:

won’t work!
ols wage const gender education experience experience^2

Rather, you need to add the square to the dataset under its
own name, as in

series exper2 = experience^2
ols wage const gender education experience exper2

This obviously contrasts with the standard treatment of
function arguments, where an arbitrary expression that eval-
uates to an object of the right type can be given in place of
a predefined variable or constant.

Having said that, it’s not quite true that only the names
of series will do as arguments to commands such as ols. In
hansl you can substitute a named list of series, which can
help to make scripts more compact and easier to maintain,
as in

cross section of individuals, where wage holds some measure
of the individual’s wage, gender is a 0/1 “dummy variable”
coding for male/female, and education and experience are
measures of the individual’s degree of education and working
experience respectively.

list X = gender education experience
ols wage const X

Returning to the second point above—commands have no
return value and hence don’t support assignment—this is
not as absolute as it might seem. There’s no direct re-
turn value from any hansl command but commands that
do “interesting” things generally support accessors—that is,
built-in read-only variables that give access to quantities
computed in executing the command. Accessors in hansl
have names beginning with $ (which is not allowed for user-
defined variables). In the case of ols, one result that’s often

wanted is the series of residuals, ût = yt − Xtβ̂, and this
is available as $uhat. If you’re primarily interested in the
residuals from a given regression, and you don’t care to see
the printed output from ols, you can achieve a function-like
effect by doing

ols wage const X --quiet
series uh = $uhat

Incidentally, this usage illustrates the form of command op-
tions in hansl: they begin with a double-dash. The --quiet

option (which suppresses all printed output from ols) is
simple in that it neither requires nor supports any param-
eter; some option flags do have a parameter (in some cases
required, in others optional). For example, suppose that
having added the residual series to the dataset as uh above
we wanted to save the full dataset to disk. We might do

store wage_new.gdt --gzipped=6

The store command saves a dataset to file, in this case using
gretl’s native XML format as flagged by the gdt extension.
The --gzipped option is used to get compression applied to
the file; the associated parameter sets the gzip compression
level (in the range 0 to 9). This parameter is optional, with
the compression level defaulting to 1.

Hansl’s repertoire includes over 130 commands, catego-
rized under the headings Tests (hypothesis tests of various
kinds), Statistics (descriptive statistics), Dataset (manipu-
lation of datasets, including transposition, sorting, ODBC
access, etc.), Estimation (core estimation of parameterized
models), Graphs (scatter plots, boxplots, time-series plots,
etc.), Programming (including control flow and debugging),
Transformations (constructing series via logs, lags, etc.),
Printing (formatting various objects, in TEX and RTF as
well as plain text), Utilities and Prediction (forecasting).
These are documented in [1].

Most non-trivial commands expect the names of series as
arguments but some have a different character. We have
seen that the store command takes a file name as its first
argument (it can take a list of series following the file name
but this is optional, the default behavior being to save all
series). Since we have mentioned the business of setting
the sample range we’ll illustrate a different pattern via the
smpl command. In its simplest form this command requires
integer starting and ending points, as in

smpl 1 80

The effect here is to limit the scope of all statistical analysis
to the first 80 observations in the dataset until further notice.
If the data are time series the range can be specified in date
form:

smpl 1990:01 2011:12 # assuming monthly data
smpl 2010-02-01 2013-11-30 # assuming daily data

Different syntax is required if we want to set the sample
based on some Boolean criterion. Suppose a cross-sectional
dataset includes a series named gender, such that 0 indicates
male and 1 female, and we want to limit our analysis to
females. We can then do

smpl gender==1 --restrict

where the --restrict flag alerts gretl to the fact that it
should expect a Boolean condition rather than starting and
ending points.

We should point out here that the mechanism of com-
mands in hansl has a good deal in common with Stata (the
leading proprietary econometrics package today, widely used
in the teaching of undergraduates and also by applied econo-
metricians in their research). Specifically, these features are
in common:

• “Relaxed” syntax: command-word followed by space-
separated arguments.

• Commands do not return anything but in many cases
offer a set of accessors for internal variables computed
in the process of executing the command.

• Trailing option flags can be used inflect the behavior
of many commands.

Moreover, it’s not just Stata: other econometric and sta-
tistical software such as Eviews, RATS (Regression Analysis
of Time Series), LIMDEP (specialized software for regression
analysis with limited dependent variables), SPSS and SAS
all share the same approach.

4.2 Datasets and matrices
We have noted the duality between assignment plus func-

tion calls, under which aspect hansl resembles Matlab in
many ways, and datasets, series and commands, where hansl
resembles the practice of most special-purpose econometric
software. However, there’s no ban on traffic between the two
realms and indeed such traffic is very much part of the hansl
idiom. Let’s consider two examples.

First, suppose we have data in the “raw” matrices y and
X but we know that the columns of these matrices repre-
sent quarterly time series observations, starting in the first
quarter of 1990, and we wish to run a regression of y on the
first four lags of the columns of X.6 In hansl we could use
the code shown in Example 2.

Example 2: Traffic from matrices to series

nulldata rows(y) --preserve
setobs 4 1990:1
series ys = y
list XList = null
loop i=1..cols(X)
XList += genseries(sprintf("x%d", i), X[,i])

endloop
list Xlags = lags(4, Xlist)
ols ys const Xlags

6A “lag” in econometric jargon means a prior value of a
variable: the first lag of xt is xt−1, the second xt−2, and so
on. Lags are often included in time-series models to allow
for delay in the effect of one variable on another.

This requires some explanation. First, the nulldata com-
mand creates a new, “empty” dataset with a number of ob-
servations, T , given by its (single) argument. In this case
the value of T is set by the number of rows in y (which we
assume matches the number of rows in X). Opening or cre-
ating a new dataset in gretl generally implies clearing out
the program’s workspace; here we use the --preserve flag
to tell gretl not to destroy our existing matrix objects.

Second, the setobs command works to establish the char-
acter of the dataset: the first argument is the integer fre-
quency and the second is the starting observation. With
the arguments given above gretl will understand that we in-
tend quarterly data starting in 1990 Q1. (Arguments of 12

and 1990:01 would have indicated monthly data starting in
January 1990.)

Third, the statement “series ys = y” converts the col-
umn vector y into a series named ys; that is, it takes the
values in y and puts them into a newly created series named
ys that is added to the dataset. This works if the vector in
question has the same number of rows as the current dataset
has observations (or when the dataset is sub-sampled, if the
length of the vector matches the length of the current sub-
sample).

On the fourth line we define an empty list (of series)
named XList.

The following loop construct illustrates one of several
forms of iterative mechanisms supported in hansl, namely
one governed by an integer index which starts at a given
value (here, 1) and is incremented by 1 until it equals a given
final value (here, the number of columns in X). At each iter-
ation we generate a named series from a column of X. The
genseries function takes two arguments, the name for the
series to be added (here composed via sprintf, which in
hansl returns the created string) and an expression to form
the series. (Note that in hansl matrix elements are specified
within square brackets, with row and column separated by
a comma and an empty field signifying “take them all”.) We
thereby create series x1, x2 and so on, and cumulate them
into XList via the += operator.

Once the loop is complete we construct a new list, Xlags,
via the built-in lags function. The first parameter of this
function is the maximum lag length (here, 4) and the second
is either the name of a series or the name of a list of series.
Given a second argument of XList the effect is to add 4n
series to the dataset, where n is the number of elements in
XList (which equals the number of columns in X). These
series will be named x1_1 (the first lag of x1), x1_2 (the
second lag of x1), and so on, up to (say) x5_4 (the fourth
lag of x5), if n = 5.

Having constructed the list of lagged terms we then pass
this to the ols command as our list of regressors. We could
have carried out this whole process purely in matrix terms
with no reference to a dataset but it would have been a lot
less convenient.

The example above involved converting from matrices to
series in the context of a suitably defined dataset. For an
example of traffic in the opposite direction, suppose we want
to find the Cholesky decomposition of the matrix of cross-
products of a set of series in a dataset. This is “naturally”
a matrix operation but that’s not a problem, we can eas-
ily convert the series into a matrix. Suppose the series in
question are named x1, x2 and x3. Then here’s the solution:

matrix X = {x1, x2, x3}
matrix C = cholesky(X’X)

In hansl matrices can be defined in various ways but if we’re
defining one “extensively”—by setting out its elements7—
one variant is to supply a set of names of series, separated
by commas and enclosed in braces; each named series is
taken to supply a column. If the series in question were
already grouped into a named list (say, Xlist) it would be
even simpler:

matrix X = {Xlist}

4.3 Function definitions
Another thing that programmers will want to know about

any language is how it handles functions (parameter passing
convention and so on). Here we have to make a distinction
between built-in functions and user-defined ones; we start
by describing built-in functions.

Hansl provides access to over 200 functions in the gretl li-
brary, dealing with statistical methods, linear algebra, string
manipulation, dates, and so on (see [1] for details). Jointly
these functions take as arguments all of the hansl datatypes
(scalars, series, lists, matrices, strings, bundles, arrays). In
many cases they are overloaded, accepting two or more types
for a given parameter slot and returning a value that is ap-
propriate given the argument. We noted above that the
lags function accepts either a series or a list argument in its
second parameter slot. Among many other examples, the
log function will return the scalar (natural) logarithm of a
scalar argument, return a log series if given a series argu-
ment, or return a matrix (whose elements are the logs of the
corresponding elements of the argument) if given a matrix
argument.

As for parameter passing, from the user’s point of view
this is pass-by-value except in certain cases where auxil-
iary results may be wanted (see below). That is, except
for such cases the user can be confident that no function ar-
gument will be modified. Internally the gretl library knows
that it shouldn’t modify regular arguments (e.g. should not
use them as workspace), and provided they are treated as
read-only they don’t have to be physically copied. So, for
example, a user-defined matrix that is passed as a regular
argument to a built-in function will not be copied (unless
the internal C function which implements the hansl func-
tion modifies its argument); rather the relevant pointer will
be passed to the function.

We just mentioned auxiliary results. Neither built-in func-
tions nor user-defined ones can directly return multiple ob-
jects (a difference from Matlab). But in some cases functions
may calculate more than one thing that may be wanted by
the user. To cover these cases hansl employs a C-like mech-
anism. For example, the eigengen function returns the ma-
trix of eigenvalues of a “general” (not necessarily symmetric)
matrix. If a user wants in addition the matrix of right eigen-
vectors she can give the “address” of a pre-declared matrix
to retrieve this result. The signature of eigengen is

matrix eigengen (matrix A, matrix *U)

where A is the input and U is the (optional) location to receive
the eigenvectors. Valid calls to this function may be on any
of the following patterns:

7As opposed to, say, defining an identity matrix of order n,
in which we can simply say M = I(n).

matrix e = eigengen(A, null) # or
matrix e = eigengen(A) # or
matrix U
matrix e = eigengen(A, &U)

Besides functions “returning” extra values via pointer ar-
guments, they can in effect return multiple values via the
bundle type. A hansl bundle is an associative array capable
of holding scalars, series, matrices, strings, arrays and bun-
dles, these members being added and retrieved via (string)
keys.8 A function that returns a bundle can therefore supply
the caller with multiple objects of mixed type; this applies
to both built-in and user-defined functions.

User-defined functions are subject to strict treatment with
regard to the handling of arguments; they are not under the
direct control of the gretl authors and we wish to ensure
that they have no unwanted side effects. All “undecorated”
arguments to user-defined functions are physically copied
(via malloc) when they are passed, and the copies are de-
stroyed when the function returns. This means that function
writers are free to use, e.g., series or matrix arguments as
workspace. However, explicitly “pointerized” arguments—
designed for retrieval of additional results as in eigengen—
are supported. In addition, if a function writer marks a
parameter as const it is passed “as is,” with an enforcement
mechanism: if a function tries to modify an argument so
marked this generates an error and its execution is aborted.

4.4 User-function examples
Having mentioned user-defined functions, we show a cou-

ple of linked samples in Example 3 to give a fuller flavor of
the language. These form part of a gretl function package
which computes the estimated marginal effects of a given in-
dependent variable in the context of ordered logit or probit
models (discrete choice models in which there are m possible
ordered outcomes for the dependent variable). We will not
attempt a blow-by-blow account of what the functions do,
but they are working with probabilities, using among other
resources the built-in functions dnorm and cnorm which com-
pute, respectively, the density and cumulative distribution
function for the standard normal distribution. Hopefully,
what’s going on should be more or less transparent to any-
one familiar with programming, though the exact purpose
of the computations may be obscure to those not versed in
econometrics.

One aspect of these sample functions may be worth re-
marking. The practice of explicitly declaring the type of
each variable on its initial definition is recommended but
not required; gretl will automatically assign a type if need
be. For example, in place of scalar k = cols(X) at the
start of the function ordered_pj we could have written k =

cols(X) and got a scalar variable just the same. And while
in these functions all the local variables are declared at the
outset that is the author’s preferred coding style rather than
a requirement: new variables can be introduced at any point
in a function. Once introduced, however, variables in hansl
are strictly typed; in subsequent assignment the right-hand
value must match the fixed type on the left.9

8This type is implemented by the GHashTable mechanism in
the GLib library.
9In fact there’s a little flexibility here. Scalars and matrices
with a single element are considered interchangeable types
in assignment. Moreover, you can assign a scalar value to a
matrix of any size, the effect being to set all elements of the

Example 3: Sample hansl functions

function matrix ordered_func (scalar Xb,
const matrix cut,
int dist,
bool deriv)

scalar n = rows(cut)
matrix ret = zeros(1, n)
scalar arg
loop j=1..n --quiet
arg = cut[j] - Xb
if dist == 1 # logit
ret[j] = deriv ? logit_pdf(arg) : 1/(1+exp(-arg))

else # probit
ret[j] = deriv ? dnorm(arg) : cnorm(arg)

endif
endloop
return ret

end function

function matrix ordered_pj (const matrix theta,
const matrix X,
int m,
int dist)

/*
Computes the probability of each outcome,
j=1,...,m, for the given parameter vector theta
and regressor matrix X; m denotes the number of
possible outcomes and dist should be 1 for logit
or 2 for probit. Returns a (row) m-vector of
probabilities.

*/
scalar k = cols(X)
matrix b = theta[1:k]
matrix cut = theta[k+1:]
matrix fc = ordered_func(X*b, cut, dist, 0)
matrix prob = zeros(1, m)
loop j=1..m --quiet
if j == 1
prob[j] = fc[j]

elif j < m
prob[j] = fc[j] - fc[j-1]

else
prob[j] = 1 - fc[j-1]

endif
endloop
return prob

end function

4.5 Block commands
It may be worth mentioning a further, somewhat distinc-

tive syntactical element in hansl. Most commands—and all
of those we have illustrated above—are one-liners, but we
have found it useful to implement a command “block” or
environment for dealing with certain sorts of complex cases.
These are cases where the “command” in question is not just
a unitary procedure but rather a toolkit whereby the user
can construct an estimator according to some principle or
other.

One such block command, mle (Maximum Likelihood esti-
mation), is illustrated in Example 4. The example pertains
to the probit model for binary choice. For some event of
interest we define a variable y which takes on value 1 if the
event occurs and 0 if it does not, at each observation i. We’re
interested in how certain covariates, X, might influence the
probability that the event occurs. There are various ways of
formulating such a model but in the Probit variant we have

Pi = Prob(yi = 1|X) = Φ(zi)

where Φ(·) denotes the cumulative normal distribution func-
tion and zi, the so-called index function, is a linear combi-
nation of the k elements of X at observation i:

zi =

k∑
j=1

Xijβj

Following the Maximum Likelihood (ML) principle we wish
to find the value of the parameter β that maximizes the
joint probability of the observed outcomes {yi}, given X.
(In practice we maximize the log of the likelihood.)

Example 4: An mle command block

supposing we have a series y and a list of series,
Xlist, at our disposal
series P = mean(y)
matrix X = {Xlist}
matrix b = zeros(cols(X), 1)
series z
series m
mle logl = y*log(P) + (1-y)*log(1-P)
z = lincomb(Xlist, b)
P = cnorm(z)
m = y ? invmills(-z) : -invmills(z)
deriv b = X .* {m}

end mle

The mle block begins with an equation for the log-likelihood.
There then follow as many equations as are wanted to de-
fine ancillary variables. Finally, using the keyword deriv, we
provide an expression for the derivative of the log-likelihood,
per observation, with respect to the parameter (here the
vector named b). This line also performs the function of
identifying the adjustable parameter.10

When the command is processed the statements in the
block are executed iteratively under the control of the BFGS
maximizer. On successful completion b will contain the ML
estimates—and unless the --quiet flag is appended to the

matrix to the given value.
10You can get gretl to use numerical derivatives if you omit
the deriv line. In that case you need to give a params line
to identify the parameter(s).

closing line gretl will print a full account of the parameter
estimates, their standard errors and so forth.11

The log-likelihood for the binary probit model is simple,
and the necessary calculations are easily “inlined” in the mle

block with the help of built-in functions. In more complex
cases, it would be idiomatic to write a specific function to
compute the log-likelihood and call it from the first line of
the block.

Similar command blocks are implemented for nonlinear
least squares, GMM estimation, and estimation of systems
of simultaneous equations.

4.6 Executing “foreign” code
The block approach is also used in a facility unique to

gretl, namely the foreign mechanism whereby the user can
interpolate into a hansl script a set of statements to be exe-
cuted by another program, with apparatus available to ferry
data between the programs. This facility is supported for
Octave, R, Python, Ox, Stata and Julia; it may be used to
exploit functionality in the “foreign” program that is not
currently available in gretl or for the purpose of comparing
results.

Returning to the example given at the beginning of these
notes, a simple foreign block could be used to verify that
gretl and R produce the same results from an OLS regression—
see Example 5.

Example 5: Simple use of a foreign block

open a datafile that is supplied with gretl
open data9-7.gdt
matrix y = {QNC}
matrix X = {const, PRICE, INCOME, PRIME}
compute OLS coefficients
matrix b_gretl = inv(X’X)*X’y

mwrite(y, "y.mat", 1)
mwrite(X, "X.mat", 1)

foreign language=R
y = gretl.loadmat("y.mat");
X = gretl.loadmat("X.mat");
b = solve(t(X) %*% X) %*% t(X) %*% y
gretl.export(b, "b_R");

end foreign

matrix b_R = mread("b_R.mat", 1)
print b_gretl b_R

Gretl initializes R such that the functions gretl.loadmat
and gretl.export are available; the complementary func-
tions mwrite and mread can be used within gretl. The (op-
tional) last argument to the latter two functions is a switch
that tells gretl to write/read in a special directory that is
known to be writable by the user and whose name is auto-
matically passed to R.

The example above is obviously trivial: it would beto-
ken a serious bug in one or both of the programs if they
produced substantially different results for the calculation
shown. Nonetheless, applied to more complex cases hansl’s
“foreign” apparatus can be a useful domain-specific feature.
In coding complex econometric estimators various questions

11This particular model is in fact implemented in C in the
gretl library and supported by the built-in probit command,
but it provides a nice simple example of the general idea.

can arise for which there is not a clear-cut “right answer”
(for example, whether or exactly how to apply a degrees of
freedom correction). In such cases it is useful to be able to
compare output in full precision across different programs
that are nominally calculating the same thing.

4.7 Hansl function packages
We said at the outset that gretl is written in C. By that

we mean that the gretl library—which underlies all built-
in commands and functions—is coded entirely in C. How-
ever, for the past several years we have placed increasing
emphasis on extending gretl’s functionality via “function
packages” written in hansl. There are now 100+ such pack-
ages on the gretl server, covering such things as computing
“marginal effects” in a wide range of nonlinear models, esti-
mating“Threshold”models for panel data, assessing possible
structural breaks in time-series models, and handling sparse
matrices.

A gretl function package takes either of two forms: an
XML file containing hansl function code, a sample caller
script, and plain text documentation, or a zip archive con-
taining in addition PDF documentation and/or example data
files or gretl-matrix files holding constants wanted by the
package (for example, critical values for a non-standard test
statistic). The gretl GUI offers functionality for creating,
editing and uploading such packages, although they may
also be prepared via command-line methods; there’s a Guide
to this that covers both approaches [2]. Users can down-
load such packages from within gretl or via a web browser.
Package writers have the option of integrating their pack-
ages into the gretl GUI, if appropriate (that is, specifying a
menu item by which their package will be called, plus other
refinements).

The idea of contributed packages written in the script-
ing language of a program (as opposed to the language in
which the program itself is written) is obviously not unique
to gretl—see Matlab “Toolboxes” or R’s Contributed Pack-
ages. But it shows that hansl has attained sufficient matu-
rity to enable interested users (who, for the most part, would
not consider attempting to code in a low-level language such
as C) to use this language as a vehicle to parlay their econo-
metric expertise into software useful to their peers.

5. DISCUSSION AND COMPARISON
We have described hansl, a language which is tailored to

econometrics in two main ways. First, besides supporting
manipulation of matrices and other common, generic data-
types, it also supports the rich data structure which we
have called a “dataset,” in which metadata such as vari-
able names and temporal structure are incorporated in a
relatively seamless manner. Second, the language supports
commands (relatively straightforward and easy to learn, and
traditional in econometric software) as well as the common
apparatus of fully-fledged programming languages (function-
calling, function-definition, declaration of and assignment to
named variables of various types).

Given the sociology of econometrics, the latter point in
particular means that gretl + hansl offers an “upgrade” path
for users ready to take it. At step 0, a user can carry out
basic—and in fact, not so basic—econometric analyses us-
ing only the graphical interface. Among the other packages
mentioned in this paper, only the proprietary Eviews offers
such functionality. At step 1, a user can formalize his or

her investigations by writing a script in hansl. (The GUI
program offers a helping hand here, by recording the hansl
equivalent of actions performed via the graphical interface.
This“command log”can then be used as the basis for a hansl
script.) At step 2, a user who started out as a pure “con-
sumer” can progress to the point of writing sophisticated
hansl functions that others may wish to use.

How does this compare with the other software we have
mentioned? We will take as points of comparison here Mat-
lab, R, Stata and Eviews.

As we mentioned above, Matlab is quite popular among
working econometricians who wish to code their own esti-
mators.12 But it is not geared to econometrics in particular,
and does not have any built-in notion of a “dataset.” Even
disregarding the price, it would hardly be the software of
choice for anyone teaching econometrics to undergraduates.
For econometric functionality one would be dependent on
add-on “Toolboxes,” unless one were coding such function-
ality from first principles.

R describes itself as a “language and environment for sta-
tistical computing.” We may consider it a DSL for statis-
tics, but not for econometrics in particular. Beyond the
basics, such as linear regression, most econometric function-
ality in R depends on contributed packages. And of course
R has no “commands,” everything is done via function calls.
Computer scientists may be inclined to see this as a virtue,
but for reasons given earlier teachers of econometrics, and
even applied econometricians, may be skeptical. (Under-
grads taking econometrics courses typically have no prior
programming experience, and in such a course there are
many difficult concepts to get across besides computational
ones.) In addition, while R is certainly a very impressive
project overall, its syntax is quite idiosyncratic and “fussy”
in some respects. Consider Example 5: disregarding the
identifiers of the operands it takes 6 symbols to indicate
“multiply A-transpose into B”—3 for the transposition and
3 for the multiplication—as opposed to 2 in Matlab and just
1 in gretl (as also in Ox13).

Of the various programs discussed here, Stata and Eviews
are closest to gretl in terms of their avowed focus on econo-
metrics. As in gretl datasets and series are basic, and econo-
metric functionality—from simple to advanced—is supported
by a wide range of built-in commands. Both programs sup-
port scripting, but their respective languages are quite odd
from the point of view of a programmer used to general-
purpose scripting languages or Matlab-like interfaces for ma-
trix manipulation. It is not possible to define a function as
such in either Stata or Eviews. In Stata one can write “pro-
grams” that implement new commands, and there are many
sophisticated user-contributed programs. However, this has
been accomplished despite the quirks of the language, one
of the more obvious of which is that names of user-defined
variables (“macros” in Stata-speak) must always be quoted,
so that indexing into a matrix looks like this:

local aij = ‘A’[‘i’,‘j’]

12And besides, it has a reputation for both correctness and
speed, although in the latter regard it has perhaps been
edged out by Julia over the last year or so.

13Ox is a C++-like language, oriented to econometrics and
with matrix operations as primitives, see www.doornik.com.
It would merit further discussion, were it not for the fact that
it is a good deal lower-level than the other software treated
here.

Our intent with hansl has been to define a language that
supports the simple “batch of commands” mode of operation
that is traditional in econometric software (and that relates
directly to operations performed via a graphical interface),
as well as offering a reasonably streamlined means of ma-
nipulating matrices and writing complex functions. It is of
course up to econometricians to judge how worthwhile this
project is, and how successful we have been in implementing
it.

6. REFERENCES
[1] A. Cottrell and R. Lucchetti. Gretl Command

Reference. gretl documentation, 2016.

[2] A. Cottrell and R. Lucchetti. Gretl Function Package
Guide. gretl documentation, 2016.

[3] A. Cottrell and R. Lucchetti. Gretl User’s Guide. gretl
documentation, 2016.

[4] A. Cottrell and R. Lucchetti. A Hansl Primer. gretl
documentation, 2016.

[5] R. A. Fisher. On the mathematical foundations of
theoretical statistics. Philosophical Transactions of the
Royal Society of London, Series A, 222:309–368, 1922.

[6] T. Haavelmo. The probability approach in
econometrics. Econometrica, 12, Supplement:1–115,
1944.

[7] L. P. Hansen. Large sample properties of generalized
method of moments estimation. Econometrica,
50:1029–1054, 1982.

[8] W. Petty. The Economic Writings of Sir William
Petty, volume 1. Cambridge University Press,
Cambridge, 1899. Edited by Charles Henry Hull.

