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Nonlinear pricing is prevalent in industries such as health care, public utilities, and telecommunications. However,
this pricing scheme introduces bias into estimating elasticities for welfare analysis or policy changes. I develop a
local elasticity estimation method that uses nonlinear price schedules to isolate consumers' expenditure choices
from selection and simultaneity biases. This method improves over previous approaches by using commonly-
available observational data and requiring only a single general monotonicity assumption. Using claims-level
data on health insurance with two nonlinearities, I am able to measure two separate elasticities, and find that
elasticity declines from −0.26 to−0.09 by the second nonlinearity. These estimates are then used to calculate
moral hazard deadweight loss. This method enables estimation of many policies with nonlinear pricing which
previous tools could not address.
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1. Introduction

Demand elasticities are important to policy makers for designing
cost-sharing and calculatingwelfare in sectors such as health insurance,
public utilities, and telecommunications. However, pricing is commonly
nonlinear in these sectors, for example in deductibles in health in-
surance, tiered pricing in public utilities, and contracts with usage
allowances in telecommunications.1 Nonlinear pricing contributes to ef-
ficient plan design, but complicates estimation of elasticities for several
reasons. First, the price a consumer faces is a function of quantity; con-
sumers must pass a certain level of spending to reach a new price level.
Second, selection bias occurs when an unobservable factor, such as
health status or preferences for high versus low data use, pushes a con-
sumer above or below the nonlinearity. Using observable variables such
as age to proxymay not reduce bias, since unobservable health status is
likely correlated with age. It is difficult to get rid of this selection bias
without experimental data or an exogenous shock, both of which are
empirically rare.
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In this paper, I present a method to calculate elasticity in the pres-
ence of nonlinear pricing in consumer contracts. This method uses the
nonlinearity itself to control for bias by taking advantage of the discon-
tinuous change in price across the nonlinearity, while controlling for
the underlying distribution of individual unobserved characteristics.
Thismethod has very general data requirements and uses only onemin-
imally restrictive assumption: that the expenditure of interest must be
increasing in the unobserved preference characteristic. I then apply
this method to a private health insurance claims-level dataset with
two nonlinearities. In addition to providing an updated health expendi-
ture demand elasticity, my results also are novel because I am able to
estimate elasticities at different points on the same demand curve. Iden-
tification uses the nonparametric estimation framework of Matzkin
(2003). This method uses the same key insight as Bajari et al. (2010),
but here I focus on individual consumer contracts rather than provider
contracts. Consumers have less precise control over health expenditures
given health status than Bajari et al. (2010) find using provider charges
by hospitals over a diversity of expense categories. Besides the novel
setting of consumer contracts, applying thismethod to health insurance
contracts estimates health expenditure elasticities which are used to
design contracts andmakewelfare predictions of insurance expansions.
This paper is able to measure elasticities in two separate regions, which
is informative since demand for health care likely changes along its
typically skewed spending distribution.

The goal of the method is to generate local elasticities within a con-
tract with nonlinear pricing. Themethod is aimed at policy applications
such as understanding consumer behavior in certain regions, or how
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changing pricing schedules might affect the distribution of spending,
given a particular consumer contract design.

The “gold standard” of elasticity estimation is experimental data. The
best example in the health industry is the RAND Health Insurance
Experiment (HIE), which began in 1971 and was conducted over
15 years (Manning et al., 1987; Newhouse, 1993). The RAND HIE
avoided selection bias by randomizing patients into health plans' pric-
ing schedules. While excellent for reducing selection bias, experimental
data is extremely costly in terms of both time andmoney and is difficult
to replicate. In addition, the results from the HIE best apply to the same
population type and insurance framework of the HIE. This estimation
method can be used on more specific populations of interest to policy
makers or on new insurance structures. Since the RANDHIE, exogenous
shocks or natural experiments have been used to control for simul-
taneity and selection bias. Cherkin et al. (1989) use the introduction of
office visit copayments for government employees to create a quasi-
experimental price change with which to measure elasticity. Selby
et al. (1996) use a similar technique taking advantage of a copayment
introduction for emergency room visits in a large HMO. In measuring
price response more generally, Doyle and Almond (2011) find a sub-
stantial increase in mother's length of stay due to better insurance
coverage around a policy treatment for children born just before and
just after midnight. These natural experiments are difficult for policy
makers to use regularly, however, because they rely on unique exoge-
nous changes.

Eichner (1998) and Kowalski (2010) create a natural experiment in
the presence of a deductible when an unexpected injury exogenously
pushes other non-injured family members into a different pricing
zone. Using a two-period utility model, Duarte (2012) also uses an
unforeseen accident instrument on Chilean data to reveal how elastici-
ties vary by income and demographics. However, unexpected injury in
a deductible structure is hard to replicate in pharmaceutical or public
utilities data, for example. The method presented here is accessible to
policy makers outside of the health plan family deductible, a useful
tool given the prevalence of nonlinear pricing in many other sectors.

Previous methods also estimate one elasticity over the whole range
of expenditures. In health expenditures especially, distributions are
commonly skewed, with a large proportion of consumers spending
small amounts and a long tail of high spending consumers. Tiered pric-
ing structures are often created precisely because different groups of
consumers exist. Telecommunications users who end up near usage
allowance limits are using bandwidth differently than low bandwidth
users, i.e. using email versus video streaming. Estimating one elasticity
over an entire range may mask heterogeneity of elasticity values along
the distribution. An advantage of this method to policy makers is
that it provides a local estimate of elasticity around current pricing
points—those very areas that policy makers and insurance administra-
tors may be modifying.

The main intuition of this estimation uses the kink in the price
schedule at the nonlinearity. Selection bias exists because agents on
either side of the nonlinearity face different prices, but are also different
on an unobservable dimension such as health status or preferences
for bandwidth use. In this paper's setting of a deductible, patients who
surpass the deductible face a lower price for care, but also likely had
more health shocks. However, the marginal price of an additional unit
of care remains constant on each side, but changes suddenly at the non-
linearity. Identification is off the fact that marginal price is constant
within the estimation regions, but the distribution of health status
changes along the estimation window. Using the differences in the
density of final spending before and after the nonlinearity allows us to
isolate the change in spending due only to prices.

Identification is based on Matzkin (2003). The only condition that
must hold is that final expenditure is strictly increasing in the individual
unobserved characteristics that induce expenditure. For example, if an
individual has a higher preference for bandwidth use, his final expendi-
ture on bandwidth usage will be higher than an individual with a lower
preference for use. For health insurance, this unobserved characteristic
measure will be able to capture a more general ranking of health than
diagnosis codes or self-reported health status. The unobserved charac-
teristics are essentially a latent error term. Given this condition and
using Matzkin (2003) I am able to proxy the distribution of unobserv-
able characteristics using the percentiles of final expenditures.

Given both final expenditures and the estimated relative values of
the unobserved characteristics, the method uses local linear regression
to measure how expenditure increases for an increase in the unob-
served characteristic. I calculate this slope on each side of the nonlinear-
ity. The final elasticity estimate is the difference between the two slopes
as they approach the nonlinearity and the threshold enrollee, thus con-
trolling for selection and simultaneity bias while isolating the response
due solely to price. I then plug this price response into an elasticity for-
mula which includes the price level at the nonlinearity to calculate final
elasticity.

I apply this method to a detailed claims-level dataset for an
employer-sponsored Consumer Driven Health Plan (CDHP). This plan
was chosen because it has two nonlinear pricing points. Although base-
line implementation of this method only requires individual-level final
expenditure and the pricing structure associatedwith the expenditures,
the greater detail in my data allows me to perform several robustness
checks of the method with observable variables. I find elasticity esti-
mates of −0.26 in lower expenditure ranges compared with −0.09 in
higher spending ranges. These estimates are slightly above and below
the RAND HIE estimate of −0.22, which was not a local estimate, but
instead estimated over a broad range of spending. Previous literature
uses elasticities as an indicator of moral hazard in insurance. I take my
elasticity estimate one step further tomeasuremoral hazard deadweight
loss by calculating the counterfactual choices the elasticity predicts. The
deadweight loss from full-coverage insurance is approximately 20% of
final expenditures less than $1000.

This paper builds on the elasticity estimation literature in health, but
also into a more general nonlinear estimation literature. Maximum like-
lihood approaches such as in Gary and Hausman (1978) and Hausman
(1985) require specific distributional assumptions, whereas the method
outlined here uses nonparametric estimation and requires only one strict
monotonicity assumption. Other tax applications, such as Blomquist and
Newey (2002) require substantial variation in prices across sample ob-
servations, which is less likely to hold for pricing in the sectors above
than for taxes. Recent work by Saez (2010) and Chetty et al. (2013)
also look at nonlinearities in the EITC tax code. Saez finds evidence con-
sistent with changing labor hours in response to changes in the tax code,
but finds that themost pronounced changes can be attributed to tax eva-
sion. The method here is related, but has the advantage that the main
condition of monotonicity links the outcome of interest and unobserved
characteristics more flexibly, which allows for the lack of distinct
bunching cited by Saez. Aron-Dine et al. (2012) also highlight the highly
nonlinear environment of health insurance. The authors examine expen-
diture response to health insurance price within a year, to address the
problem that a patient's price changes along his distribution of expendi-
ture. Thiswork highlights the difficulties of calculating an elasticity using
only one price over a large range of values. This question of forward-
looking or myopic behavior is not of first-order concern in this paper,
however, because this method targets those just below or just above a
deductible—individuals with relatively similar probabilities of reaching
a post-deductible price. Those individuals well beyond a nonlinearity
are not in the scope of this estimation method or local elasticity.

This paper has three contributions. First, I present a newmethod for
measuring elasticities withminimal distributional ormodeling assump-
tions. The method has commonly attainable data requirements and can
be applied to consumer contracts. Second, this method is based on a
common feature which previously introduced bias in estimation, but
can now be used in a variety of sectors. Using nonlinearities means
that this method is most useful for local elasticities along expenditure
distributions. Finally, I use this method to estimate elasticities for an
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employer-sponsored health insurance plan over two different areas of
the spending distribution to measure changes in elasticity and then
measure the deadweight loss of moral hazard.

The rest of the paper proceeds as follows: Section 2 sets up a general
model of expenditure choice. Section 3 lays out the estimation frame-
work, Section 4 describes the data, and Section 5 discusses the elasticity
results. Section 6 describes the moral hazard estimation and results.
Section 7 concludes.

2. General model of health expenditure

This section lays out amodel of a patient's health expenditure choice
within an insurance plan with nonlinear pricing. The goal of the model
is to generate predictions on the relationship between the underlying
distribution of health shocks of a population and the population's health
expenditure choices. I will use the model to compare the distribution
of final expenditures in the pre-deductible region versus the post-
deductible region. The model presented here is similar to the frame-
work in Huang and Rosett (1973), and generates the same reduced
form predictions as the approaches in Manning et al. (1987), and
Newhouse et al. (1980). In what follows, the patient is choosing his
annual expenditure in dollars after having already chosen his insurance
plan.2

To place this model in the example of a deductible, consider patients
visiting a physician over the course of the year in response to various
health shocks. A patient may benefit from multiple visits to the physi-
cian, with a cost for each visit. As the number of visits increases, the
patient crosses the deductible and enters a higher coverage region. As
the patient's marginal cost of a visit changes, the patient adjusts the
frequency of his physician visits. This response is a combination of the
severity and number of the patient's health shocks and the marginal
cost to the patient of visiting the physician. Both the effect of health
shocks and marginal cost will combine to decide the final end-of-year
expenditure. The estimation will compare how these two effects reveal
different patterns across patients who faced different marginal costs.

A patient has utility over his health expenditure, h, and composite
good consumption, c. The patient's unobserved heterogeneity is his
accumulated health shocks, θ.

U h; θ; cð Þ:

Accumulated health shocks, θ, represent the shocks of varying
number and severity the patient experienced over the course of the
year. Higher values of θ are greater accumulated health shocks, and
the population's end-of-year accumulated health shocks have a cdf, Fθ.
This θ is defined broadly, becausewewill use it only to place an individual
in relation to the sample population.

This general θ is useful for the estimation method presented below
on questions involving final yearly spending, although it doesn't neces-
sarily map empirically to diagnosis codes. Two patients could arrive at
similar values of θ in different ways. However, by defining θ broadly
we avoid ad hoc assumptions on quantifying the severity of diseases
or attempting to rank health conditions.3 The θ value will capture any
unobserved characteristics about the patient which lead to health
expenditures.

The utility function satisfies the following conditions:

U h; θ; cð Þ ¼ u h; θð Þ þ c ð1Þ
2 This framework could be modeled alternatively as a joint decision of a patient and his
doctor, where optimizationmaximizes the patient's health. The predicted relationship be-
tween health status and expenditure is the same.

3 If the behavior of a particular population or health condition was of interest, the ap-
proach presented here could also be used to compare only yearly observations from that
population, with sufficiently large datasets.
For any given θ; ∃ eh such that
∂u eh; θ� �

∂eh ¼ 0 ð2Þ

∂2u h; θð Þ
∂2h

b 0 ð3Þ

∂u h; θð Þ
∂θ b 0 ð4Þ

∂2u h; θð Þ
∂h∂θ N 0: ð5Þ

Condition (1) is quasilinearity of composite good consumption in
the utility function. Quasilinearity removes any income effects of health
care consumption, which matches this application. Previous literature
on income elasticity in health expenditures found estimates close to
zero (Phelps, 1992) or generally lower for higher-income groups
(DiMatteo, 2003). Additionally, this paper's application uses expendi-
tures in the range of $200–$1800 for employed consumers, so income
effects are not likely to be economically significant.

Condition (2) incorporates any nonmonetary costs of health care
consumption and allows formarginal prices of zero, which are common
in many nonlinear pricing applications. This condition sets an expendi-
ture point for each level of θ where marginal utility crosses zero. Non-
monetary costs of health care consumption include the inconvenience
cost of doctor visits such as travel time, waiting time, and treatment
time (Janssen, 1992). Chiappori et al. (1998) also find that non-
monetary costs are important, leading to more price-sensitivity in phy-
sician services as compared to home visit services. This condition also
captures that marginal utility might be negative for high levels of health
expenditures if a patient has low accumulated health shocks.

Condition (3) states health expenditures exhibit decreasing mar-
ginal returns to utility. Condition (4) means that higher levels of health
shocks decrease utility. Finally, Condition (5) states that there are com-
plementarities between health expenditure and health shocks. For
higher levels of accumulated health shocks, the marginal utility of
health expenditure increases.

The patient's budget constraint balances the out-of-pocket costs of
health expenditures and composite good consumption with patient in-
come. Out-of-pocket costs are a function of the plan's pricing structure
and the accumulated health expenditures, h. Denote the patient's bud-
get constraint as:

cþ OOP hð Þ≤ y:

Annual income for each patient is y. Out-of-pocket expenses from
the insurance plan's nonlinear pricing structure are OOP(h).

The insurance plan's pricing is nonlinear at a certain level of
expenditure, h. Consider the following pricing schedule, typical of
a deductible, where a patient pays full out-of-pocket costs until
reaching the deductible, then has no further out-of-pocket costs for
any additional units of health expenditure. The reimbursement
schedule for a deductible, h is:

OOP hð Þ ¼ h if h≤h
h if hNh

�
: ð6Þ

This pricing schedule determines marginal prices for an additional
unit of health expenditure. The marginal price structure is:

p ¼ 1 if h≤h
0 if hNh

�
: ð7Þ
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The patient optimizes over health expenditure choice h⁎. The FOC
over each marginal price segment, given a level of accumulated shocks,
θ, is:

MU�
θ ¼

∂u h�; θð Þ
∂h� ¼ p: ð8Þ

Fig. 1 shows a patient's optimization problemwith sample marginal
utility curves that satisfy the utility conditions stated above. The mar-
ginal utility curves are combined with the nonlinear marginal price
structure described above. Comparing the curves, the rightmost patient
with the highest level of accumulated health shocks, θ″, has a higher
marginal utility for the same level of h as compared to a patient with
lower accumulated health shocks, θ.

A static model of choice predicts a gap in expenditures at the mar-
ginal price change in Fig. 1, and bunching if the marginal price change
reverses. I do not empirically observe such a stark behavioral response
because several assumptions implicit in such a simple diagram likely
do not hold in this application. Saez (2010) presents a similar example
in the tax literature that also addresses a lack of observed bunching. A
clear gap assumes that patients have full control of spending down to
dollar increments. While expenditures have a monotonic relationship
with respect to accumulated shocks, such finite control over expendi-
tures is not likely. Also, final expenditures must be continuous in this
simple example, which is not generally the case in health care. Although
some nonlinear pricing sectors such as electricity andwater may have a
more continuous quality to their products, the limited ability of the con-
sumer to continuously monitor purchases may result in similar non-
continuous expenditures. Furthermore, the size of the gap present in
any model of health expenditures should be very small, because the
highly inelastic indifference curves form an increasingly small gap in
expenditures.

Two key points emerge from the FOC in Eq. (8) and Fig. 1:

1. Optimal health expenditure, h⁎, depends on both accumulated
health shocks, θ, and marginal price, p.

2. Optimal health expenditure, h⁎, is strictly increasing in accumulated
health shocks, θ.

The first point means that accumulated health shocks and the non-
linear pricing plan determine expenditure together, and any empirical
estimation of h⁎ should flexibly incorporate both. Second, optimal
health expenditure, h⁎, strictly increases with higher accumulated
health shocks, θ. This strictlymonotonic relationship reflects the balance
between utility condition (5), complementarities between h and θ, and
utility condition (2), decreasing marginal utility of health expenditure.

The nonlinear pricing schedule's presence in Point 1makes elasticity
estimation difficult for several reasons, however. The first source of bias
is that hi and Pi are simultaneously determined by the deductible level of
where

1

0

,

Fig. 1. Example of patients' optimization.
expenditure, h. Additionally, the underlying unobserved θi determines
both hi and pi. Higher levels of accumulated health shocks induce a
higher hi and its corresponding pi. Fixing this simultaneous determina-
tion problem is nontrivial. Observable patient characteristics used to
proxy for unobserved θi are likely correlatedwith the error term. For ex-
ample, the latent accumulated health shocks related to an 80-year-old
patient's expenditures compared with a 20-year-old patient's expendi-
tures are correlated. This paper's method will use estimation that does
not require an uncorrelated i.i.d. error term.

Previous health elasticity approaches use average expenditures
of demographically similar populations to control for illness severity
(Cherkin et al., 1989; Scitovsky and Snyder, 1972; Scitovsky and
McCall, 1977). However, the health shock θ distribution potentially
changes between comparison years. For example, demand for physician
services includes time-confounding factors such as differences in
flu seasons or the availability of new treatments or drugs. More impor-
tantly, the most price-sensitive patients have the opportunity to drop
out of the sample through dis-enrollment as prices increase. This
paper's estimationmethod compares behaviorswithin a year, so it relies
on within-period variation. This avoids the intertemporal problem of
exit from and entry into the insurance plan.

Another approach to the endogeneity problem above is to use
instrumental variables for price that are independent of a patient's accu-
mulated health shocks. For example, as in Eichner (1998), Kowalski
(2010), where the authors take advantage of when unexpected injuries
push a family over the deductible. This approachworkswell in a setting
of general medical expenditures with family deductibles. Duarte (2012)
broadens this instrumental variables approach using awider population
in Chile, an important contribution of non-US elasticity estimation.
The advantage of the approach presented here is it can be used in a
broad range of applications outside of such an empirical setting where
“unexpected injury” instruments may be harder to construct, such as
nonlinear rate schedules in public utilities and telecommunications, or
prescription drugs. This approach can also be used on individual cover-
age observations, as in this application, or in chronic disease populations
which lack an unexpected component.

The model of health expenditure choice above applies to a patient's
decision over a defined benefit period. Although a patient's inter-
temporal decisions across or within benefit periods are interesting as
well, the above framework is used for several reasons. First, the motiva-
tion for this method is to inform policy on nonlinear pricing schedules,
which generally apply to expenditures over a pre-defined benefit
period. Long-term elasticities are a different policy question.4 Second,
any effects on the estimates of a patient's ability to postpone treatment
into the next benefit period depend on howmuch this delaying behavior
varies across years in the population as a whole. Postponing treatment
until the following year is a concern in this framework only if the extent
of intertemporal substitution of the population changes yearly in a plan.
This characteristic is unlikely to change in consecutive years given local
changes in the price schedule. If the ability to postpone health care is rel-
atively constant from year to year, then this simply represents another
aspect of the underlying accumulated health shock distribution. The
broad health shockmeasure includes the time-sensitivity of care. Empir-
ically, patients in the data display great persistence in health care spend-
ing year over year.

3. Estimation method

The generalmodel of health expenditures reveals two important de-
terminants of health expenditures: marginal prices, p, and accumulated
health shocks, θ. Marginal price data is generally easy to obtain. Data on
4 Aron-Dine et al. (2012) address this understudied question nicely with a natural ex-
periment revealing a patient's intertemporal choices along a year when faced with a
deductible.
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accumulated health shocks is muchmore difficult, however. Besides the
difficulty in obtaining identifiable data on diagnoses, constructing a
health shock variable out of diagnoses is necessarily subject to ad hoc
assumptions. Most importantly, any measure of accumulated health
shocks will still have a large observed error component because of the
endemic difficulty in measuring health.

In the model above, accumulated health shocks are essentially a
latent error term. The θ term is any unobserved health characteristic,
and health expenditures are increasing in this unobserved, latent error
term. Matzkin (2003) presents a framework to address this type of
latent error nonparametrically. Identification using the Matzkin (2003)
framework is off the fact that marginal price is constant within the esti-
mation regions on each side of the nonlinearity, but the distribution of θ
values change along the estimation window.5

This framework has several advantages in this setting. Nonparamet-
ric specification allows the unobservable random term to be built into
the estimator fromwithin themodel. The estimator is freed from the as-
sumption of additive error present in any OLS specification, allowing
health status to influence expenditures flexibly and nonlinearly. Non-
parametric estimation also relaxes the OLS requirement that the error
term has a mean zero distribution.

Using the two conditions predicted by the model's optimal decision
rule, I construct a flexible, nonparametric relationship to predict yearly
health expenditures using the method described in Matzkin (2003).
Patient i's choice of yearly health expenditure, hi, is a function ofmarginal
price, pi and health shocks, θi. The choice of health expenditure is:

hi ¼ G pi; θið Þ ð9Þ

where G is a nonparametric function. This nonparametric function maps
the space of marginal prices, {0,1}, and the space of health shock values,
Θ⊂ℝ, to the choice of health expenditures. That is, G : {0, 1} ×Θ→ℝ. As
per the FOC outcome of the model above, G is strictly increasing in θi.

The known components of Eq. (9) are yearly health expenditures, hi,
and marginal price, pi. The unknown components of Eq. (9) are the
nonparametric function G and the latent health characteristics of the
patient, θi. These latent health shocks are the error term of the nonpara-
metric function. The goal of the elasticity estimation is to isolate the
effect of the function G on the outcome of hi due solely to changing pi,
while holding θi constant.

Fig. 2 displays the intuition behind the function G for the case of a
deductible. Fig. 2 represents a narrow expenditure region surrounding
the deductible. Consider first the left-hand Panel 2a. The horizontal
axis is increasing in the latent component, the health shocks θi, while
the vertical axis is increasing in health expenditure, hi, which is
observed. Any line on the figure shows how G maps an increase in the
latent accumulated health shocks, θi, to a corresponding increase in
choice of health expenditure, hi, on the vertical axis. The vertical dashed
line at θdenotes the location of the level of health shocks which leads to
spending at the level of the deductible. Patients pay a marginal price of
one before hitting the deductible, and after the deductible patients pay a
marginal price of zero, labeled p = 1 and p = 0, respectively.

Panel 2a displays the first step of identifying G. When the p argu-
ment in Eq. (9) is constant within each region, Matzkin (2003) shows
that the function G can be identified within that region. The function
hi = G(1, θi), shown by the solid line, can be estimated based on all
the θibθ where p = 1. Above θ, the function hi = G(0, θi), shown by
5 Identification takes advantage of constant marginal price within a region. By design,
the end-of-year prices in this framework are similar because estimation is over final ex-
penditures near the nonlinearity. As such, this method is best suited for the policy frame-
work described above, that of a local elasticity. This local elasticity may necessarily be an
underestimate of elasticity over a large expenditure range, which would reflect greater
differences in end-of-year prices.Marginal price ismyopic, but the small range also creates
similar forward-looking prices. Elasticity estimation over a larger rangemay not be able to
capture potentially greater variances in forward-looking behavior.
the dashed line, can be calculated based on all the θNθ where p = 0.
These figures show G as a linear function for expositional purposes;
final estimation is more flexible.

Note that the slope of the dashed line where p = 0 is more steep
than the solid line wheremarginal p=1. This shows the same increase
in accumulated health shock maps to a larger increase in health expen-
ditures when marginal price is zero. To predict health expenditures in
the full out-of-pocket region on the diagram, choose a θi∗ and plug it
into the estimated equation hi = G(1, θi∗).

Panel 2b shows the second step of the estimation—the prediction of
health expenditures for different marginal prices. An elasticity calcula-
tion requires a patient's health expenditure choice at two different
prices, given a fixed level of latent accumulated health shocks. To do
this, use the slope of the function G where p = 0, which is the dashed
line hi = G(0, θi) in Panel 2a. Transfer this slope into the region where
p = 1. Panel 2b demonstrates this where the dashed line with the
steeper slope begins at the origin and rises above the solid line
representing Gwhen p=1. To predict the choice of health expenditure
for two different prices, the estimator isolates a given level of health
shocks, θi∗, and uses the solid line hi = G(1, θi∗) and the dashed line
hi = G(0, θi∗) to predict the choice of hi when p = 1 and p = 0,
respectively.

Unknown in the diagrams described so far is the distribution of the
latent accumulated health shocks. If we knew the underlying distribu-
tion of health shocks, we could use this to estimate the function
G. Matzkin (2003) shows that latent θ can be proxied by the percentile
function because the function G is strictly increasing in θi. That is, even
without knowing the exact shape of Fθ distribution, if a particular
patient's health expenditures are in the 75th percentile of expenditures,
then the latent health shocks of that patient are also in the 75th per-
centile of health shocks. The percentile function is bijective, surjective,
and monotonically increasing. Let Fh be the distribution of observed



6 Refer to the Appendix A for a construction of the estimator using the parametric form
of the general utility model. In this case, the coefficients can be built out of structural
parameters.

7 Given the extreme change in marginal price, percentage change is more informative
than a midpoint elasticity, although other applications with smaller price changes could
certainly use Eq. (14) in a midpoint formula if so desired. Aron-Dine et al. (2013) use a
midpoint formula, for example.
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individual health expenditures, hi, and Fθ be the distribution of the indi-
vidual omitted characteristics θi. The shape of the underlying distribu-
tion of omitted characteristics, Fθ, can be identified by mapping the
percentiles of the health expenditure distribution, Fh. In this way, the
unknown θi can be inferred by the econometrician, and treated as data.

Now that θi can be identified, we can estimate the function G from
Eq. (9). In each region where marginal price is constant, this function
maps a change in accumulated health shocks, θi, to a choice of health
expenditure, hi, given a fixed marginal price set by the price schedule.

Estimation uses a more flexible nonparametric approach than
displayed in Fig. 2. Local linear regression allows the functional form
of G in each marginal price region to be flexible. Where θibθ – the left-
hand side of the discontinuity – the estimation equation is:

min
aL ;bL

X
θib θ

K
θi−θ0

κ

� �
hi−aLθ0−bLθ0 θi−θ0ð Þ

� �2
: ð10Þ

Analogously, where θiNθ, the right-hand side of the discontinuity—
the estimation equation is:

min
aR ;bR

X
θib θ

K
θi−θ0

κ

� �
hi−aRθ0−bRθ0 θi−θ0ð Þ

� �2 ð11Þ

where aLθ0 , a
R
θ0 are constant coefficients and bLθ0 , b

R
θ0 are slope coefficients

based around the value θ0, K is a kernel estimatorwith bandwidth k, and
each θ0 is in a series of points used by the local linear regression over the
θ range of estimation.

Local linear regression uses Eqs. (10) and (11) to construct G(1, θ)
and G(0, θ) over a window of observations on either side of the nonlin-
earity. The estimation method combines Matzkin (2003) and intuition
from a regression discontinuity design approach. The function G(1, θ)
measures the rate of change in health expenditures as θ increases, for
a fixed marginal price of 1. The function G(0, θ) measures the rate of
change in expenditures as θ increases, for a fixed marginal price of 0.
As these two functions approach the nonlinearity, the limit latent
θ value is the same, yet the marginal price component of the functions
G is constant. The method compares the difference in the slopes of
G as they approach the limit. The estimator controls for the price
schedule's simultaneity between price and quantity by isolating the
changing θ values in the constant marginal price region.

The estimator is essentially measuring the change in the slope of a
cumulative distribution function at the point of the nonlinearity. Unob-
served heterogeneity, θ, changes over the entire estimation window,
so the estimator recovers behavioral responses using a nonparametric
inverse cdf identified via the Matzkin (2003) framework. The function
G is similar to a cdf because the unobserved accumulated health shocks
can be proxied with a percentile function. Identification occurs through
the changes in the slope in each region, where price is fixed, but the
cdf relationship is flexible. Cdf interpretation rearranges Fig. 2 so that
the horizontal axis would be spending and the vertical axis would be
percentiles of spending. The slope of G measures the percentiles of
spending for a given level of expenditure. The change in slope simply
measures how a small change in θ leads to a change in the probability
that the corresponding hi is a large jump in cumulative probability.

Though borrowing intuition from a regression discontinuity design,
one important difference between this approach and RD design is that
here the patient's omitted characteristics are the forcing variable that
determines a patient's marginal price. Because the choice of hi is strictly
monotone in the omitted characteristics θi, the patient's level of θi is
what forces him to the left or to the right of the discontinuity. Identifica-
tion in this method is not the same as a regression discontinuity design,
which requires omitted characteristics to be the same in each region.
This method specifically does not require this assumption. Here, G
nonparametrically incorporates changes in unobserved characteristics,
and identification uses the difference the relationship generated by
the unobserved characteristics, G, between constant marginal price
regimes.

The final formula for calculating elasticity uses the local linear
regression slope coefficients at the limit because we are interested in
the pointwhere patients' omitted θ are themost similar. The local linear
regressions Eqs. (11) and (10) from above are rearranged to replicate
Panel 2b as follows:

First write hi for the observations θibθ at the threshold limit θ ¼ θ

hij θibθ
� � ¼ aLθ þ bLθ θi−θ

� �
¼ aLθ−bLθθþ bLθθi
¼ AL þ bLθθi

ð12Þ

hij θiNθ
� � ¼ aRθ þ bRθ θi−θ

� �
¼ aRθ−bRθ θþ bRθ θi
¼ AR þ bRθ θi

ð13Þ

where aLθ, a
R
θ , b

L
θ , and bRθ are the constants and slope coefficients at the

limit θ.6 and AL combines the terms aLθ and −bLθ and similarly for AR2E.
To replicate Fig. 2, write a general equation for hi starting at the left

region intercept, AL, by using an indicator function equal to one when
p = 1:

hi ¼ AL þ bRθ θi þ bLθ−bRθ
� �

θi 1 p ¼ 1f g: ð14Þ

Eq. (14)'s slope coefficient order, bLθ−bRθ
� �

, is for the deductible

case, where the p = 0 region is the right-hand side. Eq. (14) solved
for hi(p = 1) and hi(p = 0):

hi p ¼ 1; θið Þ ¼ AL
θ þ bLθθi ð15Þ

hi p ¼ 0; θið Þ ¼ AL
θ þ bRθ θi: ð16Þ

In this application, I use percentage change elasticity. This is to
account for the fact that enrollees aremoving from a no coverage region
into a full coverage region.7 Elasticity, η, of moving from full out-of-
pocket into full coverage is:

η ¼ %Δhi
%Δp

¼ hi p ¼ 0; θið Þ−hi p ¼ 1; θið Þ
hi p ¼ 1; θið Þ

	 

=

0−1
1

	 


¼
− AL

θ þ bLθ θi− AL
θ þ bRθ θi

� �h i
AL
θ
þ bR

θ
θi

¼
− bRθ−bLθ
� �

θi

AL
θ
þ bR

θ
θi

:

ð17Þ

Which evaluated at θ is equal to:

η ¼ − bRθ−bLθ
� � θ

h
: ð18Þ
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Fig. 3. Nonlinear pricing schedule, consumer driven health plan.

9 The first year this plan was available was 2002, which explains the lower enrollment
statistics and associated spending levels. An advantage of several years is that results can
be compared across several years if there is concern that the first year was different be-
cause of its novelty.
10 In this method, the difference between the true limit of the expenditure choices and
the estimated value of this limit from above and below converges to an independent ex-
ponential variablewith hazard rates of f−(hL) frombelow and f+(hR) from above. The local
linear regression slopes bLθ and bRθ are then the inverse of these hazard rates, respectively.
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The case of a Health Savings Account (HSA), where patients face op-
positemarginal prices, reverses the order of bL and bR slope coefficients.

4. Data

4.1. Data

The dataset is proprietary claims-level data for an employer with
several locations. The employer is self-insured and all individual claims
are reported for each of the three years 2002, 2004, and 2005.8 Each
claim entry contains all information necessary for classifying the ser-
vices received and to remit payments. Each claim has information on
the costs incurred by the patient and the amount covered by the em-
ployer, as well as information on the treatment facilities, procedure
codes, and diagnoses. An advantage of a self-insured employer is that
income information is available to identify the socioeconomic status of
the population.

In particular, I study the Consumer-Driven Health Plan (CDHP) op-
tion available to enrollees, which is a high-deductible plan. Enrollees
had the option to enroll in four other plans offered by the employer.
The effect this may have on estimates comes through in the broader
generalizability of the type of enrollees who chose this plan, but not in
the estimates within the plan. I show that this estimation method is
not subject to selection bias for within-plan estimates. Characteristics
of patients enrolled in this plan determines the broader applicability
of these elasticity estimates.

The CDHP plan contains two nonlinearities. The first nonlinearity re-
sults from an employer-funded Health Savings Account (HSA), where
the employer deposits funds that can be used to purchase health care
from the first dollar spent until the patient exhausts the HSA. The sec-
ond nonlinearity is a deductible. Fig. 3 illustrates the nonlinear structure
of this plan.

The threshold levels of both theHSA and the deductible change from
year to year. This variation in nonlinearity thresholds helps identify
patients' responses to the nonlinear pricing schedules in two ways. If
the nonlinearity changes each year, this lends robustness to the estima-
tion method if estimates remain similar over years. Second, the estima-
tor has strong validity for observations just at the nonlinearity, but
validity is limited for observations far from the nonlinearity. However,
with estimates at proximate intervals, elasticity is estimated over an ex-
panded range of expenditures. Table 1 lists plan nonlinearities during
the years 2002, 2004, and 2005.

Table 2 reports plan summary statistics for patients who enrolled
under single coverage for the entire 12-month benefit period. The first
8 In the years 2002–2005, missing enrollee assignment codes in 2003 prevented using
this year in estimation.
rows report the yearly means and medians of total expenditure, em-
ployer cost, the yearly means of the amount of HSA used, and the
amount of deductible fulfilled. Average total expenditure for all three
years was $7387. However, health expenditure distributions tend to
be skewed, so median total expenditure was lower in all years. Lower
expenditure levels of employer cost compared to total expenditures
reflect positive out-of-pocket costs to patients. Patient expenditure var-
iables in Table 2 include the amount of the deductible fulfilled and the
amount of the HSA used. An average patient's total incurred spending
toward his deductible was $644. The average amount used of the HSA
on incurred spending was $319.9

Patient-level characteristics for single-coverage, full-year enrollees
in the insurance plan are reported in the bottom rows of Table 2. Plan
enrollment in this category grew from 165 enrollees in 2002 to 349 in
2005. The average age over all three years is 48, and the average salary
for the enrollees is $55,934. The plan enrolled 72% women.

5. Elasticity estimation results

I estimate elasticities over patients' yearly expenditures within the
estimation windows for each of the three years. Yearly estimates are
necessary because the level of the nonlinearities, and thus the threshold
θ, change every year. Table 3 displays the results for the first plan non-
linearity, the HSA. Table 4 displays results for the second nonlinearity,
the deductible. I calculate standard errors using the asymptotic distribu-
tion properties developed in Bajari et al. (2010).10

The heading of Table 3 reports the elasticity formula from Eq. (18),
arranged for the HSA nonlinearity. The first column of Table 3 reports
the year, and the second column is the number of observations within
the estimation window around the HSA. The third column reports
the level of the HSA in that year. The final column reports elasticity
estimates.

The elasticity estimates around the HSA nonlinearity are −0.25 in
2005,−0.26 in 2004, and−0.33 in 2002. All are inelastic. The similarity
across years is noteworthy because the nonlinearity value of h changes
across years between $500 and $750. The estimates reported in this
The hazard rates are estimated from the data with a one-sided kernel density. The differ-

ence between the estimated and true value of the difference in the slopes, bLθ−bRθ
� �

, con-

verges asymptotically to a normal distribution with variance calculated using f−(hL),
f+(hR), and properties of the chosen kernel.



Table 2
Data summary for full sample.

Year 2002 2004 2005 Overall

Average expenditures
Total expenditure $5251 $7130 $8647 $7387
(Median) $1492 $2024 $2288 $2016
Employer cost $4852 $6560 $7824 $6746
(Median) $990 $1551 $1899 $1537
Deductible used $540 $665 $672 $644
HSA used $257 $377 $292 $319

Demographics
Enrollees 165 341 349 855
Percent female 71 72 72 72
Age 46 48 48 48
Salary $58,783 $51,224 $58,965 $55,935
Single coverage 100.% 100.% 100.% 100.%

Includes only single coverage, full year enrollment.

Table 3
Elasticity changing from full out-of-pocket to full coverage.

Estimates at HSA nonlinearity

Year N Measured at Elasticity (η)

2002 39 $500 −0.33b (0.15)
2004 55 $750 −0.26a (0.07)
2005 61 $600 −0.25b (0.12)

Standard errors are in parentheses.
a Denotes significance at 1% level.
b Denotes significance at 5% level.

Table 4
Elasticity changing from full out-of-pocket to full coverage.

Estimates at deductible nonlinearity

Year N Measured at Elasticity (η)

2002 22 $1250 −0.09 (0.17)
2004 40 $1500 −0.08a (0.05)
2005 34 $1500 −0.09 (0.06)

Standard errors are in parentheses.
a Denotes significance at 1% level.

Table 1
Consumer driven health plan (CDHP) structure.

First nonlinearity Second nonlinearity

Year HSA Deductible

2002 $500 $1250
2004 $750 $1500
2005 $600 $1500
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paper are for a $300 window and based on an Epanechnikov kernel, but
are robust to other specifications.11

Table 4 reports the elasticity estimates at the deductible, the plan's
second nonlinearity. The first column reports the year, the second
column records the number of observations in the estimation window
around the deductible, and the third column reports the level of the
deductible in that year. The last column reports the elasticity estimates.
The lower significance level of these estimates is due to the small sam-
ple size at the higher expenditure levels of the deductible. The elastici-
ties at this nonlinearity are highly inelastic. The elasticity is −0.09 in
both 2002 and 2005, and −0.08 in 2004.
Table 5
Facility type comparison: HSA vs. deductible.

Percent Facility type Expenditures

HSA

70% Physician's office $66,137
6% Independent lab $5762
5% OB/GYN office $4549
4% Hospital outpatient $4055

Deductible

58% Physician's office $79,312
9% Independent lab $12,614
5.1. Discussion

These estimates place consumers in the inelastic region of demand,
confirming common sense about health care being a necessary good.
The estimates at the HSA are slightly higher than the RAND Health
Insurance Experiment estimates. However, the estimates at the
deductible are slightly lower then the RAND HIE. The RAND HIE found
elasticities between −0.17 and −0.22, but calculated over the whole
spending range instead of local estimates at different spending levels
Keeler and Rolph (1988). Aron-Dine et al. (2013) give a nice discussion
of different approaches to elasticity calculation in the RAND HIE. Most
similar to the framework here, the authors show that HIE participants
switching from free care to a 95% coinsurance had an elasticity of
approximately−0.23. The advantage of this approach's local estimation
is it sidesteps the limitations of calculating a single price for a complex
range of expenditures and nonlinearities in plans.

Given the deductible framework in this paper, the most appropriate
literature comparisons are those examining the changes from full insur-
ance to none, or vice versa. Boes and Gerfin (2013) compare a managed
care plan with temporary full insurance against recently introduced
cost-sharing measures. The authors also find elasticity decreasing for
11 See the Appendix A for local linear regressions using different window sizes in the
ranges of [250, 400] and different bandwidth choices for Gaussian and Uniform kernels.
higher levels of health expenditures, with an average elasticity of
−0.148, after adjusting for selection out of the HMO.

Outside of the RANDHIE, previous literature estimates elasticities for
a range of types of health expenditures. Among the estimates that apply
specifically to generalmedical expenditures, Cherkin et al. (1989) found
primary care physician visits responded the most to the introduction of
a $5 copay. Visits decreased by approximately −10% for what was ap-
proximately 15% of a typical visit charge. This response may be slightly
larger than the estimates in my data, but the Cherkin et. al data came
from an HMO where primary care physician's roles as gatekeepers
imply a higher time cost per visit as a baseline comparison. Selby et al.
(1996) found a −14% decline in emergency room visits from a much
larger copay introduction of $25–$35. The elasticity implied by these
numbers is slightly less responsive than those presented above, which
follows from emergency room visit versus physician visits.

Claims-level data allows us to lookmore closely into why these local
elasticities are different at different points of the spending distribution.
Estimates are more inelastic at the higher deductible nonlinearity com-
pared with the HSA nonlinearity. The first explanation for this may be
because a higher level of expenditures means a higher level of illness
severity, which is associated with less price sensitivity. To examine
this hypothesis, Tables 5 and 6 compare facility types and services in
8% Hospital outpatient $10,881
5% Clinic $6154

Expenditures are total within the local estimation window.
Windows are within a $300 window on each side of the nonlinearity.



12 This data is similar to the national statistics on enrollees in Consumer Driven Health
Plans. Enrollees in CDHPs tend to be richer, more educated, and healthier than their coun-
terparts in other employer-sponsored plans (Kaiser Family Foundation, 2006). The Kaiser
Family Foundation's, 2006 Survey of CDHP enrollees found that 45% of CDHPs enrollees
had salaries over 75,000, compared with 30% of the control group of employer-
sponsored enrollees in other plans. 64% of CDHP enrollees reported being in excellent or
very good health, compared with 52% in the control group.
13 Einav et al. (forthcoming) develop a model where patients select an insurance plan
based on both aggregate risk and the “slope” of the pricing structure. This suggests that
there may be selection into high-deductible plans based on the pricing schedule in addi-
tion to expected total out-of-pocket costs. Given this model, the patients selected into a
CDHPplanmaybe less price-responsive than a general population. This could biasmyfinal
estimates downward compared with a general population.
14 Age and gender likely enter thepatient's problem in the initial choice of plan, as a fixed
health status level. In the estimation window, the change in the θ variable maps to a forc-
ing variablewithin a narrowwindowof expenditures—the patient's age andgenderwould
enter as a fixed effect.

Table 6
Type of service comparison: HSA vs. deductible.

Percent Service type Expenditures

HSA
22% Physician care $20,518
19% Lab/pathology $17,536
13% Vision $12,398
12% X-ray diagnostic $11,252
10% Routine physical $9710

Deductible
19% Lab/pathology $25,902
13% X-ray diagnostic $18,402
8% Psychotherapy $11,377
6% Vision $8849
5% Surgery $7494

Expenditures are total within the local estimation window.
Windows are within $300 on each side of the nonlinearity.
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the HSA local estimationwindow versus the deductible local estimation
window.

Table 5 shows the percentage of expenditures within the local esti-
mationwindow for a given facility type, comparing theHSA anddeduct-
ible estimation windows. For both windows, physician offices are the
largest category of spending. However, physician offices are a much
higher percentage of expenditures in theHSAwindow, at 70% compared
to only 58% around the deductible. More claims in the deductible take
place at more intensive facilities compared to the physician office.
Hospital outpatient facility use is one of the more striking differences
between the two estimation samples. Hospital outpatient facilities
were 8% of expenditures in the deductible, which is double the percent
found in the HSA sample. This indicates the higher deductible spending
levels are correlated with more severe health shocks, which leads to
lower price sensitivity.

The services reported by patients' claims also suggest increasing
severity toward the deductible, as well as an indication that spending
may be less discretionary and more lumpy as the mix of services
changes between the HSA region and the deductible region. Table 6
reports the percentage of expenditures in the top 5 services in the esti-
mation windows. The two estimation windows both show significant
spending in lab/pathology, X-ray diagnostics, and vision services. How-
ever, the HSA region shows a combined total of 32% spending on physi-
cian care and routine physical services, neither of which makes the top
five at the deductible estimationwindow. Patients have a greater ability
to control the amount of routine physical services, in deciding to com-
plete an annual physical or not. In contrast, the deductible region begins
to have more Surgery services (5%), which is a service that may be less
discretionary than routine physical.

The broader application of these elasticities depends on the sample
population and its generalizability to a larger population. This method's
estimates have a high level of internal validity within the sample popu-
lation, but the external validity of these estimates to populations outside
the sample requires further discussion. There are two points of general
applicability of this sample population. First, the spending levels are
typical of the median spending of a privately insured individual under
65 during the time period. U.S. median health expenditure was $1032
in 2005 (AHRQ, 2005), which lies between the expenditure levels of
the HSA estimates ($500–$750) and the deductible estimates ($1250–
$1500). Comparing these estimates to previous work also should be
restricted to the mix of services found in these HSA and deductible
ranges. Secondly, the insurance is employer-sponsored, which is the
most common type in the U.S.

There are a few ways in which this population may not translate to
a more general U.S. health care population. The patients in this sample
are richer than the average U.S. population, thus elasticity for a general
population may be lower if income effects hold. Additionally, the
patients in the sample population are, on average, healthier than the
firm's population as a whole.12 If the severity of health shocks is lower
than a more general privately-insured population, these elasticity esti-
mates may show patients to be more responsive to marginal prices if
elasticity decreases with the severity of a health shock. Finally, willing-
ness to participate in a high-deductible plan could have implications
for the risk-aversion parameters of patients. In a study on individuals
in private insurance, van de Ven and van Praag (1981) find that increas-
ing income and education correlate positively with demand for a
deductible.13 Given these caveats, these estimates are most useful as a
local elasticity, but are not atypical of expenditures in U.S. employer-
sponsored plans.
5.2. Robustness

The identifying assumption in the estimation method is that the
latent error term, θ, is continuous across the nonlinearity but the price
changes. In this application, the latent error is accumulated health
shocks over the year of the insurance pricing structure. The θ term
should be capturing differences in these accumulated health shocks
within a $300windowon each side of the spending level of each nonlin-
earity. The resulting elasticity can be interpreted as a local interaction of
health shocks and the pricing structure. Although claims-level detail is
not strictly necessary to implement the estimation method, we can
use detail on patient claims to verify that these estimates are capturing
reactions to accumulated health shocks within a narrow window of
final expenditures, and not fixed characteristics such as age and gender.

As discussed in the estimation section, the accumulated health
shocks θ are the forcing variable into pre- or post-nonlinearity region.
Since age and gender are not health shocks within a $400 window,
but instead a fixed endowment, Tables 7 and 8 test if there is selection
on age and gender on either side of the nonlinearity.14

Table 7 shows the results of both ameans test and K-S test for differ-
ences in the distribution of ages and gender on each side of the HSA
estimation sample. None of the tests can reject the hypothesis that dis-
tributions of age and gender are the same on each side of the nonlinear-
ity. For each year, I use a means test to compare the average ages of
sample individuals that fall pre-HSA versus post-HSA. Besides just the
mean, I also run a K-S test of equality of distributions comparing the
age distribution just before versus just after the HSA nonlinearity.
Both the means test and the K-S tests cannot reject equality of the age
distribution in the pre versus post HSA samples, up to a 15% confidence
level. The bottom half of Table 7 performs the same tests on the gender
ratios and cannot reject equality for at least the 15% level for 2004 and
2005, and at least the 10% level for 2002.

Table 8 tests for equality of distributions in age and gender at the
higher nonlinearity threshold of the deductible. Neither the means
tests or the K-S test for equality of age can be rejected for 2002–2005,
for at least a 15% confidence level. The only test to come close to show-
ing significant differences pre deductible and post deductible is the



Table 9
Zipcode comparison within the HSA estimation window.

Pre-HSA Post-HSA Pre-HSA Post-HSA

2004 2005

Expenditure xx480 xx480 xx440 xx480
Locations xx455 xx455 xx404 xx485
Partial zipcode xx440 xx440 xx480 xx440

Expenditure location is ranked by total annual expenditures.
Zipcode not available for 2002.

Table 10
Zipcode comparison within the deductible estimation window.

Pre-deduct. Post-deduct. Pre-deduct. Post-deduct.

2004 2005

Expenditure xx480 xx440 xx440 xx440
Locations xx440 xx403 xx480 xx485
(Partial zipcode) xx812 xx435 xx486 xx480

Expenditure location is ranked by total annual expenditures.
Zipcode not available for 2002.

Table 7
Testing for differences in age and gender in estimation sample: before vs. after HSA.

Year N Means test K-S test Result

Age
2002 39 t = −1.60 D = 0.31 Cannot rejecta

(p = 0.12) (p = 0.25)
2004 55 t = −1.20 D = 0.20 Cannot rejecta

(p = 0.23) (p = 0.54)
2005 61 t = 0.17 D = 0.21 Cannot rejecta

(p = 0.87) (p = 0.45)

Gender
2002 39 t = 1.51 D = 0.24 Cannot rejectb

(p = 0.14) (p = 0.54)
2004 55 t = 0.08 D = 0.01 Cannot rejecta

(p = 0.23) (p = 1.00)
2005 61 t = −0.07 D = 0.01 Cannot rejecta

(p = 0.95) (p = 1.00)

T-statistics for means tests between before and after HSA nonlinearity.
D-statistics for Kolmogorov–Smirnov test of distributional equivalence.
P-values in parentheses under the respective statistics.

a Test is not significant at the 15% level or below.
b Test is not significant at the 10% level or below.
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means test on gender for 2005, which still is not significant at the 5%
level.

One possibility for why a patient crossed over the threshold that is
not consistent with the model above is that final claims were for a
more expensive doctor, which would mean that elasticity estimates
were capturing a geographic effect, not a response to health shocks.
Therefore, another robustness check compares the location of services
before and after the nonlinearity. As such, Table 9 compares service
zipcodes on each side of the HSA limit in the estimation sample for
the two years when zipcode information was available. In 2004, the
top three zipcodes were identical on each side of the nonlinearity. In
2005, two of the top three zipcodes were the same. The non-matched
zipcodes on each side were bordering zipcodes in a metropolitan cen-
ter; one of the zipcodes is for business addresses in the zipcode area.
This supports that differences in doctors are not the heterogeneity forc-
ing patients to one side or the other of the nonlinearity.

For the deductible estimation sample, Table 10 shows several com-
mon zipcodes appear in on each side of the deductible. The zipcodes
xx480 and xx440 are different business addresses in the same metro-
politan center, so the most common zipcodes in both years before and
after the nonlinearity are also from the same geographical area. Some
of thedifferences in the deductible variety of zipcodesmay be attributed
Table 8
Testing for differences in age and gender in estimation sample: before vs. after deductible.

Year N Means test K-S test Result

Age
2002 22 t = 0.12 D = 0.23 Cannot rejecta

(p = 0.91) (p = 0.95)
2004 40 t = −0.36 D = 0.20 Cannot rejecta

(p = 0.23) (p = 0.76)
2005 34 t = −0.67 D = 0.33 Cannot rejecta

(p = 0.51) (p = 0.21)

Gender
2002 22 t = -0.91 D = 0.21 Cannot rejecta

(p = 0.37) (p = 0.98)
2004 40 t = −0.36 D = 0.05 Cannot rejecta

(p = 0.72) (p = 1.00)
2005 34 t = −1.85* D = 0.26 Cannot rejectb

(p = 0.07) (p = 0.49)

T-statistics for mean tests between before and after HSA nonlinearity.
D-statistics for Kolmogorov–Smirnov test of distributional equivalence.
P-values in parentheses under the respective statistics.

a Test is not significant at the 15% level or below.
b Test is not significant at the 5% level or below.
to the increased diversity of services present in claims at the deductible,
as shown in the discussion section and Table 6.

Finally, another concern about the patients in the nonlinearity esti-
mation windows is that these patients might simply have run out of
time to file insurance claims as the year ended compared to patients
outside the estimation window. However, although December is the
most common month of last claim both in and out of the estimation
sample, less than 40% of the patients in the estimation sample filed
their last claim in December. There was a positive number of patients
in the sample showing a last claim in every month of the year, with in-
creasing probability of a last claim as the year progressed. This pattern is
consistent with the larger population's month of last claim data.15

6. Moral hazard estimation

6.1. Setup

Plans with high reimbursement rates are often cited as inducing
overconsumption andmoral hazard because the patient bears very little
of the cost of his health care. This refers to ex-post moral hazard, where
patients consume more health care because insurance insulates them
from its cost. Demand elasticities are often used as a proxy for ex post
moral hazard. I take this further by measuring the welfare impact
between observed expenditures in my generous plan with predicted
patient expenditures faced with full out-of-pocket costs. Elasticity mea-
sures reveal patients' responses to price. This counterfactual gets closer
to what policy makers are really interested in, which is the deadweight
loss of insurance-induced demand changes.

To measure the amount of deadweight loss, the extent of moral
hazard, I compare patient choice in two scenarios. The first scenario is
a generous insurance plan, which covers 100% of care. In the second
scenario, all care is paid for out-of-pocket for the same range of expen-
ditures.16 Fig. 4 illustrates the basic concept behind the deadweight loss
calculation. When the consumer is fully insured and pays zero percent
of his out-of-pocket costs, the consumer's choice of health care, hi1,
gives him consumer surplus of A + B + C. The insurance company
pays for the entire cost of this choice of health care, which amounts to
15 See Appendix A for a histogram of month of last claim for each population.
16 In these scenarios, I use only changes in coinsurance. Although premiums are also part
of an insurance plan, choosing the changes in premiums between the two scenarioswould
require several other assumptions on patient responses and how actuarially fair the insur-
ance plan is. The two scenarios going from full coverage to no coverage with no change in
premiums create an upper bound on the amount of moral hazard.



Table 11
Deadweight loss magnitude.

Year p25 p50 p75

Level ($)
2002 9.65 66.26 144.94
2004 46.88 133.88 185.97
2005 9.63 25.88 64.38

Percent of spending (%)
2002 4.75 20.29 31.68
2004 9.16 21.64 27.19
2005 2.68 6.59 12.65

OOP 
price

Health Expenditures

A

DB C

MB

MC

Fig. 4. Patient choice and welfare in counterfactual.
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B + C + D. Net welfare in the free care scenario is (A–D). I predict the
consumer's choice, hi2, if paying 100%of the cost, with consumer surplus
equal to A+B. In this second scenario the cost of care is the area B. Net
welfare in the full out-of-pocket scenario is A. Thus, the area D is the
amount of deadweight loss. To get a measure of the deadweight loss
D, I take the change in expenditure between full insurance and full
out-of-pocket, C + D, and subtract out the transfer the patient would
need to compensate him for the loss of C in the full out-of-pocket
scenario.

For empirical estimation of the reduction in health expenditure
choice, I link each value of the estimated θi to observed full coverage
health expenditure, hi1. I then use the slope coefficients estimated in
Section 5 to predict the counterfactual spending of each patient given
full out-of-pocket payment, hi2. I use only those patients from the
original HSA estimation window for the moral hazard calculation, and
I assume a constant elasticity around the nonlinearity. The HSAwindow
is the most reasonable of the two for calculations abstracting from in-
come effects.

To calculate the compensating transfer for each patient, I use the fol-
lowing utility function for the choice of health expenditure. Utility is
based on the conditions set on the general utility function in Section 2,
where the preference parameters satisfy ρ ϵ (0, 1) and γ N 0:

Ui hi; θi; cið Þ ¼ θih
ρ
i þ 1−θið Þci−γ hi: ð19Þ

The parameters θi, hi, and c have the same interpretation as in the
general mode. The γ parameter captures nonmonetary costs of health
care, such as time, and satisfies Condition (2) of the utility conditions
in Section 2. The utility function is decreasing in illness as long as
hi
ρ b ci.17 Utility is increasing in health care expenditures up tomarginal

utility of zero, and marginal utility is decreasing in additional health
expenditures. The final Condition (5) of the Utility Conditions holds
that health care increases utility by a greater amount at higher levels
of illness. I use individual salary information for non-health composite
good consumption.

The two remaining unknowns in the utility function are: the risk-
aversion parameter on health care expenditures, ρ, and the nonmone-
tary cost of health care, γ. I estimate these parameters from the data
using a general method of moments approach which chooses parame-
ters which minimize the difference between observed utility values
and the predicted utility value in the counterfactual. The estimated
values for ρ̂ were approximately 0.23 and for γ̂ were approximately
0.31.18
17 This condition always holds inmy data, because ci is the salary left after health care ex-
penses, expenditure is less than $1000 in the window, and ρ b 1.
18 See the Appendix A for further discussion of the GMM and tables of the utility param-
eter estimates.
The compensating transfer C between the two scenarios is the
amount of additional non-health care income the patient needs to
remain indifferent between his utility consuming hi1 and his utility
consuming only the lower hi2. The transfer C enters the utility function
as additional income in the full out-of-pocket cost scenario. I set the
two scenarios' utility functions equal to each other, and solve for C.
The compensating transfer is then a function of known variables:
estimated θi, ρ̂, and γ̂, observed hi1, and predicted hi2.

Ci hi1; hi2; θi; ρ̂; γ̂ð Þ ¼ θi
1−θið Þ hρ̂i1−hρ̂i2

� �
− γ̂

1−θið Þ hi1−hi2ð Þ: ð20Þ

The compensating transfer is decreasing in ρ̂. This means that the
size of the compensating transfer decreases as a patient becomes less
risk adverse in health care expenditures. The compensating transfer is
also decreasing in γ̂, indicating that the amount of compensation for
lost health care decreases as the nonmonetary costs of the foregone
care increase.

6.2. Moral hazard estimation results

The measure of deadweight loss of moral hazard here is an upper
bound, because it compares full coverage with no coverage. The dead-
weight loss is the portion of the difference in health expenditures
where the marginal cost is greater than the patient's marginal utility—
the part of the change that the patient does not require back in compen-
sating transfer.19 Table 11 displays the empirical results of the counter-
factual in levels. The magnitude of deadweight loss is highest in 2004,
which corresponds to the highest spending window. The HSA cutoff
was $750 in 2004 versus $600 and $500 in the other years. The median
level of deadweight loss was approximately $66 in 2002, $134 in 2004,
and $26 in 2005.

To put the magnitude of the deadweight loss in context, Table 11
also reports the deadweight loss as a percentage of each patient's free-
care level of spending. The median percentage of free-care spending
level was approximately 20% in both 2002 and 2004. The median per-
centage was lower in 2004, at approximately 7%. Patients at the begin-
ning of the estimation window had the smallest change in spending,
and thus the lowest levels of deadweight loss. The 25th percentile for
deadweight loss as a percentage of spending was 2.68% in 2005, 4.75%
in 2002, and 9.16% in 2004. The upper end of the distributionwas dead-
weight loss at a value of approximately 30% of free-care spending in
2002 and 2004. The 75th percentile in 2005 was 12.65%.

Previous estimates of moral hazard in health expenditures have fo-
cused on pure coinsurance elasticities. (See Newhouse, 1993; Scitovsky
and Snyder, 1972; Phelps and Newhouse, 1974; Cherkin et al., 1989;
19 The deadweight loss in the moral hazard calculation uses the observed charge to the
insurer asmarginal cost. It is likely that the observed charge to the insurer is different than
the true cost of providing the care. This true cost is often difficult to observe even with
more detailed provider-level data. If the insurer is making a profit margin abovemarginal
cost on the amount listed in the claims data, then the deadweight loss measure will be an
upper bound on moral hazard measured as marginal benefit greater than marginal cost.



Table A1
Elasticity changing from full out-of-pocket to full coverage.

Estimates at HSA nonlinearity: different kernels

Kernel Rule

Year Measured at Epanechnikov Gaussian Uniform

2002 $500 −0.33 −0.31 −0.39
2004 $750 −0.26 −0.25 −0.36
2005 $600 −0.25 −0.24 −0.31

Table A2
Elasticity changing from full out-of-pocket to full coverage.

Estimates at deductible nonlinearity: different kernels

Kernel Rule

Year Measured at Epanechnikov Gaussian Uniform

2002 $1250 −0.09 −0.10 −0.06
2004 $1500 −0.08 −0.08 −0.12
2005 $1500 −0.09 −0.11 −0.11

Table A3
Elasticity changing from full out-of-pocket to full coverage.

Estimates at HSA nonlinearity: Different windows

Window size

Year Measured at 250 300 350 400

2002 $500 −0.31 −0.33 −0.32 −0.31
2004 $750 −0.29 −0.26 −0.27 −0.26
2005 $600 −0.19 −0.25 −0.28 −0.33

Table A4
Elasticity changing from full out-of-pocket to full coverage.

Estimates at deductible nonlinearity: Different windows

Window size

Year Measured at 250 300 350 400

2002 $1250 −0.08 −0.09 −0.09 −0.15
2004 $1500 −0.11 −0.08 −0.10 −0.15
2005 $1500 −0.07 −0.09 −0.10 −0.08
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Huang and Rosett, 1973) This measure of moral hazard is more nuanced
than an elasticity because it takes into account the marginal value of
health expenditures the consumer gains, so not all increases in expendi-
ture aremoral hazard. To compare this counterfactual deadweight loss to
previous estimates, we expect pure elasticity measures of moral hazard
be larger than this deadweight loss from generous insurance.

Existing estimates on changing from full insurance to no insurance
have been measured both in natural experiments and the RAND Health
Insurance Experiment (HIE). Scitovsky and Snyder (1972) used an ex-
ogenous change in the coinsurance rate from free care to approximately
25% coinsurance to find that health expenditures decreased by approx-
imately 25%. Similarly, Scheffler (1984) used a pre-post design on the
introduction of 40% coinsurance to outpatient care and found that
expenditures decreased by approximately 38%. Both of these percent
decreases are close to the deadweight loss percentages presented
above. Assuming similar patient populations, my estimates should be
smaller than the previous studies without marginal utility adjustment.
However, my counterfactual also measures a larger price change—
going from full insurance to zero insurance. The RAND HIE is a closer
match. Keeler and Rolph (1988) found that care almost doubled going
from no insurance to full insurance in the RAND HIE. To compare the
HIE findings to the deadweight loss above, the HIE found that original
expenditures decreased by half when patients had to pay full out-of-
pocket costs, and the median deadweight loss of my estimates is 20%
of original expenditures. This implies that less than half of the HIE's
change in expenditures was inefficient moral hazard.

The deadweight loss estimates above are of interest to policymakers
concernedwith the transition from first-dollar coverage plans to higher
out-of-pocket costs for patients. The results above suggest the upper
bound on moral hazard savings are, on average, 20%. These results
apply to a population of group-insurance patients with relatively low
levels of spending. The results also suggest that the introduction of
these high deductible plans hadwelfare-improving effect for this popu-
lation in the lower regions of patient spending, though savings seemed
to top off at less than approximately 30% of existing spending.

7. Conclusion

This paper addresses two goals. The first goal is to outline a method
to measure consumer demand elasticity in the presence of nonlinear
pricing by using a nonlinearity to control for unobserved heterogeneity.
The second goal is to apply this method in patient-level data and calcu-
late a health expenditure elasticity at two different expenditure points.
I then use this elasticity to measure the extent of moral hazard in
insurance.

This paper presents an estimationmethodwhich isolates consumers
of similar unobserved heterogeneity, but who face different prices. The
observed distribution of expenditures reveals the underlying distribu-
tion of the unobserved heterogeneity. This empirical inverse cdf of
expenditures identifies the slope of the relationship between an index
of heterogeneity and resulting expenditure choices. The method then
calculates this slope on each side of a nonlinear change in marginal
prices. The estimation uses a flexible specification of a local linear
regression. As the slope of these local linear regressions between expen-
ditures and unobserved heterogeneity approaches the nonlinearity
from each side, the underlying unobserved characteristics become
similar. Thus, as the limit approaches the nonlinearity point from each
side, the difference in the slopes identifies the consumer's response to
a change in prices. Applying this method to patient data, the resulting
demand elasticity estimates in health insurance data are consistent
across all three years of study, at approximately −0.26. The elasticity
estimates apply to patient behavior in employer-sponsored insurance
over ranges of expenditures less than $1000.

In a counterfactual scenario, this elasticity is used to calculate the
compensating transfers of going from full coverage to full out-of-
pocket payment. The difference between the compensating transfer
and the change in expenditure predicted by elasticities reveals a mea-
sure of the deadweight loss ofmoral hazard. The extent of moral hazard
in my data is, on average, 20% of full-coverage expenditures, for ex-
penditures less than approximately $1000. This measure provides
insight beyond existing moral hazard measures by netting out posi-
tive marginal benefit to the consumer lost by the reduction in health
expenditures.

The major contributions of this paper are threefold. First, I create a
flexible estimation method that can be used in consumer contract
datasets where nonlinear pricing introduces bias. This method presents
less restrictive behavioral assumptions and data requirements than pre-
viousmethods. Second, because nonlinearities are present in many sec-
tors of policy importance, this method offers another tool for estimating
elasticities in specific populations or along expenditure distributions
where local price changes occur. Finally, I produce an elasticity estimate
applicable to patients in employer-sponsored insurance plans, themost
common type of insurance coverage in the U.S.

Appendix A
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Moral hazard counterfactual

Solving the utility maximization problem listed in Section 6 with
full coverage yields an equation for optimal hi1 in terms of ρ and γ. I

estimate these two parameters by choosing the values that minimize
the difference between observed and iterated estimation scenarios.
The observed health expenditures are where insurance was full cover-
age. The iterated estimated values are for hi1(ρ, γ) formed by substitut-
ing in different values for parameters ρ,γ into the model's utility
function that predicts health expenditure choice. The valueswhichmin-
imize the difference between the observed and predicted values of
health expenditure choice are optimal ρ̂; γ̂. Varying number of iterations
on a grid search produced very similar estimates for ρ̂ and γ̂. Table A5
lists the parameter estimates for three of these grid searches.
Table A5
Utility parameter estimates.

Grid size Year ρ̂ γ̂

30 × 30 2002 0.23 0.28
2004 0.37 0.31
2005 0.23 0.31

40 × 40 2002 0.22 0.29
2004 0.45 0.34
2005 0.24 0.31

50 × 50 2002 0.20 0.27
2004 0.30 0.29
2005 0.23 0.31
Parametric form of general utility model

In this appendix, I lay out a flexible parametric form for the utility
function of the patient and solve explicitly for the patient's decision rule.

Consider the following general utility function which satisfies utility
conditions (1)–(5) from Section 2:

U h; θ; cð Þ ¼ u h; θð Þ þ c
¼ γθþ αθhβ−τhþ c

: ðA1Þ

Whereγ is a parameter on the health shock,α is the parameter on the
interaction of the health shock and health expenditures, β is the patient's
risk parameter, and τ is the parameter on the time inconvenience from
going to the doctor or from utility-reducing levels of health care.

Utility conditions (1), (3), and (5) are clearly satisfied. Condition

(2) is satisfied with hmax
θ ¼ αβθ

τ

h i 1
1−β

. Condition (4) is satisfied with γ

small enough, such that γ b αhβ.
The corresponding optimal decision rule is:

h� ¼ αβθ
1−pþ τ

	 
 1
1−β

: ðA2Þ

Recall the reimbursement schedule with a deductible, h , and
resulting MC schedule as described in Section 2:

MC ¼ 1−p ¼ 1 if h≤h
0 if hNh

�
:

Given the reimbursement schedule and a health status of θ, the
corresponding optimal h⁎ in each marginal cost section is:

h� ¼

αβθ
τ þ 1

	 
 1
1−β

if h�≤h

αβθ
τ

	 
 1
1−β

if h�Nh

8>>>><>>>>: : ðA3Þ

Notice that the optimal h⁎ that is chosen in the first part of the reim-
bursement schedule, where all health expenditure must be paid fully
out-of-pocket, is smaller than the h⁎ that is chosen in the second part
of the reimbursement schedule, where all additional units of expendi-
ture are fully covered by the insurance plan.

Because the decision rule for the choice of h is strictly increasing in θ
as θ approaches the nonlinearity, the decision rule can be written in
terms of θ, where θ is the value of θ that corresponds to the nonlinearity,

h. For this reason, the indicator function 1 h≤h
n o

can be written as 1

θ≤θ
� �

, and vice versa for the right-hand side of the nonlinearity.
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Eq. (A3) can be transformed into a linear equation using a Taylor
approximation around θ. The linear approximation is:

h ¼ αβθ
τ þ 1 θ≤θ

� �" # 1
1−β

þ 1
1−β

αβθβ

τ þ 1 θ≤θ
� �" # 1

1−β

θ−θ
� � ðA4Þ

To construct a local linear regression from Eq. (A4), estimation oc-
curs in the neighborhood of the θ term, with the following coefficients:

a θð Þ ¼ αβθ
τ þ 1 θ≤θ

� �" # 1
1−β

b θð Þ ¼ 1
1−β

αβθβ

τ þ 1 θ≤θ
� �" # 1

1−β

:
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