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Abstract

Nonlinear pricing is prevalent in industries such as health care, public utili-
ties, and telecommunications. However, this pricing scheme introduces bias
into estimating elasticities for welfare analysis or policy changes. I develop a
local elasticity estimation method that uses nonlinear price schedules to iso-
late consumers’ expenditure choices from selection and simultaneity biases.
This method improves over previous approaches by using commonly-available
observational data and requiring only a single general monotonicity assump-
tion. Using claims-level data on health insurance with two nonlinearities, I
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1. Introduction

Demand elasticities are important to policy makers for designing cost-
sharing and calculating welfare in sectors such as health insurance, public
utilities, and telecommunications. However, pricing is commonly nonlinear in
these sectors, for example in deductibles in health insurance, tiered pricing in
public utilities, and contracts with usage allowances in telecommunications.1

Nonlinear pricing contributes to efficient plan design, but complicates esti-
mation of elasticities for several reasons. First, the price a consumer faces
is a function of quantity; consumers must pass a certain level of spending
to reach a new price level. Second, selection bias occurs when an unobserv-
able factor, such as health status or preferences for high versus low data use,
pushes a consumer above or below the nonlinearity. Using observable vari-
ables such as age to proxy may not reduce bias, since unobservable health
status is likely correlated with age. It is difficult to get rid of this selection
bias without experimental data or an exogenous shock, both of which are
empirically rare.

In this paper, I present a method to calculate elasticity in the presence of
nonlinear pricing in consumer contracts. This method uses the nonlinearity
itself to control for bias by taking advantage of the discontinuous change in
price across the nonlinearity, while controlling for the underlying distribution
of individual unobserved characteristics. This method has very general data
requirements and uses only one minimally restrictive assumption: that the
expenditure of interest must be increasing in the unobserved preference char-
acteristic. I then apply this method to a private health insurance claims-level
dataset with two nonlinearities. In addition to providing an updated health
expenditure demand elasticity, my results also are novel because I am able to
estimate elasticities at different points on the same demand curve. Identifica-
tion uses the nonparametric estimation framework of Matzkin (2003). This
method uses the same key insight as Bajari et al. (2010), but here I focus
on individual consumer contracts rather than provider contracts. Consumers
have less precise control over health expenditures given health status than
Bajari et al. (2010) find using provider charges by hospitals over a diversity of

1See for example, Reiss and White (2002), Herriges and King (1994), Maddock et al.
(1992) in electricity, Szabo (2010) and Diakite et al. (2009) in water and development, and
Grubb and Osborne (2012), Reiss and White (2006), Seim and Viard (2011), and Huang
(2008) in cell phone markets.
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expense categories. Besides the novel setting of consumer contracts, apply-
ing this method to health insurance contracts estimates health expenditure
elasticities which are used to design contracts and make welfare predictions
of insurance expansions. This paper is able to measure elasticities in two
separate regions, which is informative since demand for health care likely
changes along its typically skewed spending distribution.

The goal of the method is to generate local elasticities within a contract
with nonlinear pricing. The method is aimed at policy applications such
as understanding consumer behavior in certain regions, or how changing
pricing schedules might effect the distribution of spending, given a particular
consumer contract design.

The “gold standard” of elasticity estimation is experimental data. The
best example in the health industry is the RAND Health Insurance Experi-
ment (HIE), which began in 1971 and was conducted over 15 years (Manning
et al. (1987) and Newhouse (1993)). The RAND HIE avoided selection bias
by randomizing patients into health plans’ pricing schedules. While excellent
for reducing selection bias, experimental data is extremely costly in terms of
both time and money and is difficult to replicate. In addition, the results
from the HIE best apply to the same population type and insurance frame-
work of the HIE. This estimation method can be used on more specific pop-
ulations of interest to policy makers or on new insurance structures. Since
the RAND HIE, exogenous shocks or natural experiments have been used
to control for simultaneity and selection bias. Cherkin et al. (1989) use the
introduction of office visit copayments for government employees to create a
quasi-experimental price change with which to measure elasticity. Selby et al.
(1996) use a similar technique taking advantage of a copayment introduction
for emergency room visits in a large HMO. In measuring price response more
generally, Doyle and Almond (2011) find a substantial increase in mother’s
length of stay due to better insurance coverage around a policy treatment for
children born just before and just after midnight. These natural experiments
are difficult for policy makers to use regularly, however, because they rely on
unique exogenous changes.

Eichner (1998) and Kowalski (2010) create a natural experiment in the
presence of a deductible when an unexpected injury exogenously pushes other
non-injured family members into a different pricing zone. Using a two-period
utility model, Duarte (2012) also uses an unforseen accident instrument on
Chilean data to reveal how elasticities vary by income and demographics.
However, unexpected injury in a deductible structure is hard to replicate
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in pharmaceutical or public utilities data, for example. The method pre-
sented here is accessible to policy makers outside of the health plan family
deductible, a useful tool given the prevalence of nonlinear pricing in many
other sectors.

Previous methods also estimate one elasticity over the whole range of
expenditures. In health expenditures especially, distributions are commonly
skewed, with a large proportion of consumers spending small amounts and
a long tail of high spending consumers. Tiered pricing structures are often
created precisely because different groups of consumers exist. Telecommuni-
cations users who end up near usage allowance limits are using bandwidth
differently than low bandwidth users, i.e. using email versus video stream-
ing. Estimating one elasticity over an entire range may mask heterogeneity
of elasticity values along the distribution. An advantage of this method to
policy makers is that is provides a local estimate of elasticity around current
pricing points - those very areas that policy makers and insurance adminis-
trators may be modifying.

The main intuition of this estimation uses the kink in the price schedule
at the nonlinearity. Selection bias exists because agents on either side of the
nonlinearity face different prices, but are also different on an unobservable
dimension such as health status or preferences for bandwidth use. In this
paper’s setting of a deductible, patients who surpass the deductible face a
lower price for care, but also likely had more health shocks. However, the
marginal price of an additional unit of care remains constant on each side,
but changes suddenly at the nonlinearity. Identification is off the fact that
marginal price is constant within the estimation regions, but the distribution
of health status changes along the estimation window. Using the differences
in the density of final spending before and after the nonlinearity allows us to
isolate the change in spending due only to prices.

Identification is based on Matzkin (2003). The only condition that must
hold is that final expenditure is strictly increasing in the individual unob-
served characteristics that induce expenditure. For example, if an individual
has a higher preference for bandwidth use, his final expenditure on band-
width usage will be higher than an individual with a lower preference for
use. For health insurance, this unobserved characteristic measure will be
able to capture a more general ranking of health than diagnosis codes or
self-reported health status. The unobserved characteristics are essentially a
latent error term. Given this condition and using Matzkin (2003) I am able
to proxy the distribution of unobservable characteristics using the percentiles
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of final expenditures.
Given both final expenditures and the estimated relative values of the un-

observed characteristics, the method uses local linear regression to measure
how expenditure increases for an increase in the unobserved characteristic.
I calculate this slope on each side of the nonlinearity. The final elastic-
ity estimate is the difference between the two slopes as they approach the
nonlinearity and the threshold enrollee, thus controlling for selection and si-
multaneity bias while isolating the response due solely to price. I then plug
this price response into an elasticity formula which includes the price level
at the nonlinearity to calculate final elasticity.

I apply this method to a detailed claims-level dataset for an employer-
sponsored Consumer Driven Health Plan (CDHP). This plan was chosen
because it has two nonlinear pricing points. Although baseline implementa-
tion of this method only requires individual-level final expenditure and the
pricing structure associated with the expenditures, the greater detail in my
data allows me to perform several robustness checks of the method with ob-
servable variables. I find elasticity estimates of -0.26 in lower expenditure
ranges compared with -0.09 in higher spending ranges. These estimates are
slightly above and below the RAND HIE estimate of -0.22, which was not a
local estimate, but instead estimated over a broad range of spending. Previ-
ous literature uses elasticities as an indicator of moral hazard in insurance. I
take my elasticity estimate one step further to measure moral hazard dead-
weight loss by calculating the counterfactual choices the elasticity predicts.
The deadweight loss from full-coverage insurance is approximately 20 percent
of final expenditures less than $1,000.

This paper builds on the elasticity estimation literature in health, but also
into a more general nonlinear estimation literature. Maximum likelihood ap-
proaches such as in Gary and Hausman (1978) and Hausman (1985) require
specific distributional assumptions, whereas the method outlined here uses
nonparametric estimation and requires only one strict monotonicity assump-
tion. Other tax applications, such as Blomquist and Newey (2002) require
substantial variation in prices across sample observations, which is less likely
to hold for pricing in the sectors above than for taxes. Recent work by Saez
(2010) and Chetty et al. (2013) also look at nonlinearities in the EITC tax
code. Saez finds evidence consistent with changing labor hours in response
to changes in the tax code, but finds that the most pronounced changes
can be attributed to tax evasion. The method here is related, but has the
advantage that the main condition of monotonicity links the outcome of in-
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terest and unobserved characteristics more flexibly, which allows for the lack
of distinct bunching cited by Saez. Aron-Dine et al. (2012) also highlight
the highly nonlinear environment of health insurance. The authors examine
expenditure response to health insurance price within a year, to address the
problem that a patient’s price changes along his distribution of expenditure.
This work highlights the difficulties of calculating an elasticity using only
one price over a large range of values. This question of forward-looking or
myopic behavior is not of first-order concern in this paper, however, because
this method targets those just below or just above a deductible – individu-
als with relatively similar probabilities of reaching a post-deductible price.
Those individuals well beyond a nonlinearity are not in the scope of this
estimation method or local elasticity.

This paper has three contributions. First, I present a new method for
measuring elasticities with minimal distributional or modeling assumptions.
The method has commonly attainable data requirements and can be applied
to consumer contracts. Second, this method is based on a common feature
which previously introduced bias in estimation, but can now be used in a
variety of sectors. Using nonlinearities means this method is most useful for
local elasticities along expenditure distributions. Finally, I use this method to
estimate elasticities for an employer-sponsored health insurance plan over two
different areas of the spending distribution to measure changes in elasticity
and then measure the deadweight loss of moral hazard.

The rest of the paper proceeds as follows: Section 2 sets up a general
model of expenditure choice. Section 3 lays out the estimation framework,
Section 4 describes the data, and Section 5 discusses the elasticity results.
Section 6 describes the moral hazard estimation and results. Section 7 con-
cludes.

2. General Model of Health Expenditure

This section lays out a model of a patient’s health expenditure choice
within an insurance plan with nonlinear pricing. The goal of the model is to
generate predictions on the relationship between the underlying distribution
of health shocks of a population and the population’s health expenditure
choices. I will use the model to compare the distribution of final expenditures
in the pre-deductible region versus the post-deductible region. The model
presented here is similar to the framework in Huang and Rosett (1973), and
generates the same reduced form predictions as the approaches in Manning
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et al. (1987), and Newhouse et al. (1980). In what follows, the patient is
choosing his annual expenditure in dollars after having already chosen his
insurance plan.2

To place this model in the example of a deductible, consider patients
visiting a physician over the course of the year in response to various health
shocks. A patient may benefit from multiple visits to the physician, with a
cost for each visit. As the number of visits increases, the patient crosses the
deductible and enters a higher coverage region. As the patient’s marginal
cost of a visit changes, the patient adjusts the frequency of his physician
visits. This response is a combination of the severity and number of the
patient’s health shocks and the marginal cost to the patient of visiting the
physician. Both the effect of health shocks and marginal cost will combine to
decide the final end-of-year expenditure. The estimation will compare how
these two effects reveal different patterns across patients who faced different
marginal costs.

A patient has utility over his health expenditure h and composite good
consumption, c. The patient’s unobserved heterogeneity is his accumulated
health shocks, θ.

U(h, θ, c)

Accumulated health shocks, θ, represent the shocks of varying number
and severity the patient experienced over the course of the year. Higher
values of θ are greater accumulated health shocks, and the population’s end-
of-year accumulated health shocks have a cdf, Fθ. This θ is defined broadly,
because we will use it only to place an individual in relation to the sample
population.

This general θ is useful for the estimation method presented below on
questions involving final yearly spending, although it doesn’t necessarily map
empirically to diagnosis codes. Two patients could arrive at similar values
of θ in different ways. However, by defining θ broadly we avoid ad hoc
assumptions on quantifying the severity of diseases or attempting to rank
health conditions. 3 The θ value will capture any unobserved characteristics

2This framework could be modeled alternatively as a joint decision of a patient and
his doctor, where optimization maximizes the patient’s health. The predicted relationship
between health status and expenditure is the same.

3If the behavior of a particular population or health condition was of interest, the
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about the patient which lead to health expenditures.
The utility function satisfies the following conditions:

U(h, θ, c) = u(h, θ) + c (1)

For any given θ, ∃ h̃ such that
∂u(h̃, θ)

∂h̃
= 0 (2)

∂2u(h, θ)

∂2h
< 0 (3)

∂u(h, θ)

∂θ
< 0 (4)

∂2u(h, θ)

∂h∂θ
> 0 (5)

Condition (1) is quasilinearity of composite good consumption in the
utility function. Quasilinearity removes any income effects of health care
consumption, which matches this application. Previous literature on income
elasticity in health expenditures found estimates close to zero (Phelps (1992))
or generally lower for higher-income groups (DiMatteo (2003)). Additionally,
this paper’s application uses expenditures in the range of $200 - $1,800 for
employed consumers, so income effects are not likely to be economically sig-
nificant.

Condition (2) incorporates any nonmonetary costs of health care con-
sumption and allows for marginal prices of zero, which are common in many
nonlinear pricing applications. This condition sets an expenditure point for
each level of θ where marginal utility crosses zero. Non-monetary costs of
health care consumption include the inconvenience cost of doctor visits such
as travel time, waiting time, and treatment time (Janssen (1992)). Chiap-
pori et al. (1998) also find that non-monetary costs are important, leading
to more price-sensitivity in physician services as compared to home visit ser-
vices. This condition also captures that marginal utility might be negative
for high levels of health expenditures if a patient has low accumulated health
shocks.

Condition (3) states health expenditures exhibit decreasing marginal re-
turns to utility. Condition (4) means higher levels of health shocks decrease
utility. Finally, Condition (5) states that there are complementarities be-

approach presented here could also be used to compare only yearly observations from that
population, with sufficiently large datasets.
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tween health expenditure and health shocks. For higher levels of accumulated
health shocks, the marginal utility of health expenditure increases.

The patient’s budget constraint balances the out-of-pocket costs of health
expenditures and composite good consumption with patient income. Out-
of-pocket costs are a function of the plan’s pricing structure and the ac-
cumulated health expenditures, h. Denote the patient’s budget constraint
as:

c+OOP (h) ≤ y

Annual income for each patient is y. Out-of-pocket expenses from the
insurance plan’s nonlinear pricing structure are OOP (h).

The insurance plan’s pricing is nonlinear at a certain level of expenditure,
h̄. Consider the following pricing schedule, typical of a deductible, where a
patient pays full out-of-pocket costs until reaching the deductible, then has
no further out-of-pocket costs for any additional units of health expenditure.
The reimbursement schedule for a deductible, h̄ is:

OOP (h) =

{
h if h ≤ h̄

h̄ if h > h̄
(6)

This pricing schedule determines marginal prices for an additional unit
of health expenditure. The marginal price structure is:

p =

{
1 if h ≤ h̄

0 if h > h̄
(7)

The patient optimizes over health expenditure choice h∗. The FOC over
each marginal price segment, given a level of accumulated shocks, θ, is:

MU∗
θ =

∂u(h∗, θ)

∂h∗
= p (8)

Figure 1 shows a patient’s optimization problem with sample marginal
utility curves that satisfy the utility conditions stated above. The marginal
utility curves are combined with the nonlinear marginal price structure de-
scribed above. Comparing the curves, the rightmost patient with the highest
level of accumulated health shocks, θ

′′
, has a higher marginal utility for the

same level of h as compared to a patient with lower accumulated health
shocks, θ.
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A static model of choice predicts a gap in expenditures at the marginal
price change in Figure 1, and bunching if the marginal price change reverses.
I do not empirically observe such a stark behavioral response because several
assumptions implicit in such a simple diagram likely do not hold in this
application. Saez (2010) presents a similar example in the tax literature that
also addresses a lack of observed bunching. A clear gap assumes patients have
full control of spending down to dollar increments. While expenditures have
a monotonic relationship with respect to accumulated shocks, such finite
control over expenditures is not likely. Also, final expenditures must be
continuous in this simple example, which is not generally the case in health
care. Although some nonlinear pricing sectors such as electricity and water
may have a more continuous quality to their products, the limited ability
of the consumer to continuously monitor purchases may result in similar
non-continuous expenditures. Furthermore, the size of the gap present in
any model of health expenditures should be very small, because the highly
inelastic indifference curves form an increasingly small gap in expenditures.

where 

1 

0 

, 

Figure 1: Example of Patients’ Optimization

Two key points emerge from the FOC in Equation 8 and Figure 1:

1. Optimal health expenditure, h∗, depends on both accumulated health
shocks θ and marginal price p.

2. Optimal health expenditure, h∗, is strictly increasing in accumulated
health shocks θ.

The first point means accumulated health shocks and the nonlinear pric-
ing plan determine expenditure together, and any empirical estimation of h∗
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should flexibly incorporate both. Second, optimal health expenditure, h∗,
strictly increases with higher accumulated health shocks, θ. This strictly
monotonic relationship reflects the balance between utility condition (5),
complementarities between h and θ, and utility condition (2), decreasing
marginal utility of health expenditure.

The nonlinear pricing schedule’s presence in Point 1 makes elasticity esti-
mation difficult for several reasons, however. The first source of bias is that
hi and pi are simultaneously determined by the deductible level of expendi-
ture, h̄. Additionally, the underlying unobserved θi determines both hi and
pi. Higher levels of accumulated health shocks induce a higher hi and its
corresponding p. Fixing this simultaneous determination problem is nontriv-
ial. Observable patient characteristics used to proxy for unobserved θi are
likely correlated with the error term. For example, the latent accumulated
health shocks related to an 80-year-old patient’s expenditures compared with
a 20-year-old patient’s expenditures are correlated. This paper’s method will
use estimation that does not require an uncorrelated i.i.d. error term.

Previous health elasticity approaches use average expenditures of demo-
graphically similar populations to control for illness severity (Cherkin et al.
(1989), Scitovsky and Snyder (1972), Scitovsky and McCall (1977)). How-
ever, the health shock θ distribution potentially changes between comparison
years. For example, demand for physician services includes time-confounding
factors such as differences in flu seasons or the availability of new treatments
or drugs. More importantly, the most price-sensitive patients have the op-
portunity to drop out of the sample through dis-enrollment as prices increase.
This paper’s estimation method compares behaviors within a year, so it re-
lies on within-period variation. This avoids the intertemporal problem of exit
from and entry into the insurance plan.

Another approach to the endogeneity problem above is to use instru-
mental variables for price, that are independent of a patient’s accumulated
health shocks. For example, as in Eichner (1998), Kowalski (2010), where
the authors take advantage of when unexpected injuries push a family over
the deductible. This approach works well in a setting of general medical
expenditures with family deductibles. Duarte (2012) broadens this instru-
mental variables approach using a wider population in Chile, an important
contribution of non-US elasticity estimation. The advantage of the approach
presented here is it can be used in a broad range of applications outside of
such an empirical setting where “unexpected injury” instruments may be
harder to construct, such as nonlinear rate schedules in public utilities and
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telecommunications, or prescription drugs. This approach can also be used
on individual coverage observations, as in this application, or in chronic dis-
ease populations which lack an unexpected component.

The model of health expenditure choice above applies to a patient’s de-
cision over a defined benefit period. Although a patient’s intertemporal de-
cisions across or within benefit periods are interesting as well, the above
framework is used for several reasons. First, the motivation for this method
is to inform policy on nonlinear pricing schedules, which generally apply to
expenditures over a pre-defined benefit period. Long-term elasticities are
a different policy question.4 Second, any effects on the estimates of a pa-
tient’s ability to postpone treatment into the next benefit period depends
on how much this delaying behavior varies across years in the population
as a whole. Postponing treatment until the following year is a concern in
this framework only if the extent of intertemporal substitution of the popu-
lation changes yearly in a plan. This characteristic is unlikely to change in
consecutive years given local changes in the price schedule. If the ability to
postpone health care is relatively constant from year to year, then this sim-
ply represents another aspect of the underlying accumulated health shock
distribution. The broad health shock measure includes the time-sensitivity
of care. Empirically, patients in the data display great persistence in health
care spending year over year.

3. Estimation Method

The general model of health expenditures reveals two important deter-
minants of health expenditures: marginal prices, pi, and accumulated health
shocks, θ. Marginal price data is generally easy to obtain. Data on accu-
mulated health shocks is much more difficult, however. Besides the difficulty
in obtaining identifiable data on diagnoses, constructing a health shock vari-
able out of diagnoses is necessarily subject to ad hoc assumptions. Most
importantly, any measure of accumulated health shocks will still have a large
observed error component because of the endemic difficulty in measuring
health.

In the model above, accumulated health shocks are essentially a latent
error term. The θ term is any unobserved health characteristic, and health

4Aron-Dine et al. (2012) address this understudied question nicely with a natural exper-
iment revealing a patient’s intertemporal choices along a year when faced with a deductible.
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expenditures are increasing in this unobserved, latent error term. Matzkin
(2003) presents a framework to address this type of latent error nonpara-
metrically. Identification using the Matzkin (2003) framework is off the fact
that marginal price is constant within the estimation regions on each side of
the nonlinearity, but the distribution of θ values change along the estimation
window.5

This framework has several advantages in this setting. Nonparametric
specification allows the unobservable random term to be built into the esti-
mator from within the model. The estimator is freed from the assumption
of additive error present in any OLS specification, allowing health status
to influence expenditures flexibly and nonlinearly. Nonparametric estima-
tion also relaxes the OLS requirement that the error term has a mean zero
distribution.

Using the two conditions predicted by the model’s optimal decision rule,
I construct a flexible, nonparametric relationship to predict yearly health
expenditures using the method described in Matzkin (2003). Patient i’s
choice of yearly health expenditure, hi, is a function of marginal price, pi
and health shocks, θi. The choice of health expenditure is:

hi = G(pi, θi) (9)

where G is a nonparametric function. This nonparametric function maps
the space of marginal prices, {0, 1}, and the space of health shock values,Θ ⊂
R to the choice of health expenditures. That is, θi G : {0, 1} × Θ → R. As
per the FOC outcome of the model above, G is strictly increasing in θi.

The known components of Equation (9) are yearly health expenditures,
hi, and marginal price, pi. The unknown components of Equation (9) are
the nonparametric function G and the latent health characteristics of the pa-
tient, θi. These latent health shocks are the error term of the nonparametric
function. The goal of the elasticity estimation is to isolate the effect of the

5Identification takes advantage of constant marginal price within a region. By design,
the end-of-year prices in this framework are similar because estimation is over final expen-
ditures near the nonlinearity. As such, this method is best suited for the policy framework
described above, that of a local elasticity. This local elasticity may necessarily be an un-
derestimate of elasticity over a large expenditure range, which would reflect both greater
differences in end-of-year prices. Marginal price is myopic, but the small range also creates
similar forward-looking prices. However, elasticities over a larger range may not be able
to capture potentially greater variances in forward-looking behavior.
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function G on the outcome of hi due solely to changing pi, while holding θi
constant.

Figure 2 displays the intuition behind the function G for the case of a
deductible. Figure 2 represents a narrow expenditure region surrounding the
deductible. Consider first the left-hand Panel 2a. The horizontal axis is
increasing in the latent component, the health shocks θi, while the vertical
axis is increasing in health expenditure, hi, which is observed. Any line on
the figure shows how G maps an increase in the latent accumulated health
shocks, θi, to a corresponding increase in choice of health expenditure, hi, on
the vertical axis. The vertical dashed line at θ̄ denotes the location of the
level of health shocks which leads to spending at the level of the deductible.
Patients pay a marginal price of one before hitting the deductible, and after
the deductible patients pay a marginal price of zero, labeled p = 1 and p = 0,
respectively.

Panel 2a displays the first step of identifying G. When the p argument in
Equation (9) is constant within each region, Matzkin (2003) shows that the
function G can be identified within that region. The function hi = G(1, θi),
shown by the solid line, can be estimated based on all the θi < θ̄ where
p = 1. Above θ̄, the function hi = G(0, θi), shown by the dashed line, can
be calculated based on all the θ > θ̄ where p = 0. These figures show G as a
linear function for expositional purposes; final estimation is more flexible.

Note that the slope of the dashed line where p = 0 is more steep than the
solid line where marginal p = 1. This shows the same increase in accumulated
health shocks maps to a larger increase in health expenditures when price
is zero. To predict health expenditures in full out-of-pocket region on the
diagram, choose a θ∗i and plug it into the estimated equation hi = G(1, θ∗i ).

Panel 2b shows the second step of the estimation – the prediction of health
expenditures for different marginal prices. An elasticity calculation requires a
patient’s health expenditure choice at two different prices, given a fixed level
of latent accumulated health shocks. To do this, use the slope of the function
G where p = 0, which is the dashed line hi = G(0, θi) in Panel 2a. Transfer
this slope into the region where p = 1. Panel 2b demonstrates this where
the dashed line with the steeper slope begins at the origin and rises above
the solid line representing G when p = 1. To predict the choice of health
expenditure given two different prices, the estimator isolates a given level of
health shocks, θ∗i , and uses the solid line hi = G(1, θ∗i ) and the dashed line
hi = G(0, θ∗i ) to predict the choice of hi when p = 1 and p = 0, respectively.

The unknown in the diagrams described so far is the distribution of the
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(a) Step 1: Estimate G in each pricing region
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expenditure 

(b) Step 2: Predict h for fixed θ∗ using G

Figure 2: Simplified exposition of estimator
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latent accumulated health shocks. If we knew the underlying distribution of
health shocks, we could use this to estimate the function G. Matzkin (2003)
shows that latent θ can be proxied by the percentile function because the
function G is strictly increasing in θi. That is, even without knowing the
exact shape of Fθ distribution, if a particular patient’s health expenditures
are in the 75th percentile of expenditures, then the latent health shocks of
that patient are also in the 75th percentile of health shocks. The percentile
function is bijective, surjective, and monotonically increasing. Let Fh be the
distribution of observed individual health expenditures, hi, and Fθ be the
distribution of the individual omitted characteristics θi. The shape of the
underlying distribution of omitted characteristics, Fθ, can be identified by
mapping the percentiles of the health expenditure distribution, Fh. In this
way, the unknown θi can be inferred by the econometrician, and treated as
data.

Now that θi can be identified, we can estimate the function G from Equa-
tion (9). In each region where marginal price is constant, this function maps
a change in accumulated health shocks, θi, to a choice of health expenditure,
hi, given a fixed marginal price set by the price schedule.

Estimation uses a more flexible nonparametric approach than displayed
in Figure 2. Local linear regression allows the functional form of G in each
marginal price region to be flexible. Where θi < θ̄ – the left-hand side of the
discontinuity– the estimation equation is:

min
aL,bL

∑
θi<θ̄

K

(
θi − θ0

κ

)(
hi − aLθ0 − b

L
θ0

(θi − θ0)
)2

(10)

Analogously, where θi > θ̄, the right-hand side of the discontinuity– the
estimation equation is:

min
aR,bR

∑
θi<θ̄

K

(
θi − θ0

κ

)(
hi − aRθ0 − b

R
θ0

(θi − θ0)
)2

(11)

where aLθ0 ,a
R
θ0

are constant coefficients and bLθ0 , b
R
θ0

are slope coefficients
based around the value θ0, K is a kernel estimator with bandwidth k, and
each θ0 is in a series of points used by the local linear regression over the θ
range of estimation.

Local linear regression uses Equations 10 and 11 to construct G(1, θ) and
G(0, θ) over a window of observations on either side of the nonlinearity. The
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estimation method combines Matzkin (2003) and intuition from a regression
discontinuity design approach. The function G(1, θ) measures the rate of
change in health expenditures as θ increases, for a fixed marginal price of
1. The function G(0, θ) measures the rate of change in expenditures as θ
increases, for a fixed marginal price of 0. As these two functions approach
the nonlinearity, the limit latent θ value is the same, yet the marginal price
component of the functions G is constant. The method compares the differ-
ence in the slopes of G as they approach the limit. The estimator controls
for the price schedule’s simultaneity between price and quantity by isolating
the changing θ values in the constant marginal price region.

The estimator is essentially measuring the change in the slope of a cu-
mulative distribution function at the point of the nonlinearity. Unobserved
heterogeneity, θ, changes over the entire estimation window, so the estimator
recovers behavioral responses using a nonparametric inverse cdf identified via
the Matzkin (2003) framework. The function G is similar to a cdf because the
unobserved accumulated health shocks can be proxied with a percentile func-
tion. Identification occurs through the changes in the slope in each region,
where price is fixed, but the cdf relationship is flexible. Cdf interpretation
rearranges Figure 2 so that the horizontal axis would be spending and the
vertical axis would be percentiles of spending. The slope of G measures the
percentiles of spending for a given level of expenditure. The change in slope
simply measures how a small change in θ leads to a change in the probability
that the corresponding hi is a large jump in cumulative probability.

Though borrowing intuition from a regression discontinuity design, one
important difference between this approach and RD design is that here the
patient’s omitted characteristics are the forcing variable that determines a
patient’s marginal price. Because the choice of hi is strictly monotone in the
omitted characteristics θi, the patient’s level of θi is what forces him to the
left or to the right of the discontinuity. Identification in this method is not
the same as a regression discontinuity design, which requires omitted char-
acteristics to be the same in each region. This method specifically does not
require this assumption. Here, G nonparametrically incorporates changes
unobserved characteristics, and instead identification uses the difference the
relationship generated by the unobserved characteristics, G, between con-
stant marginal price regimes.

The final formula for calculating elasticity uses the local linear regression
slope coefficients at the limit because we are interested in the point where pa-
tients’ omitted θ are the most similar. The local linear regressions Equations
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11 and 10 from above are rearranged to replicate Panel 2b as follows:
First write hi for the observations θi < θ̄ at the threshold limit θ = θ̄

hi|(θi < θ̄) = aLθ̄ + bLθ̄ (θi − θ̄)
= aLθ̄ − b

L
θ̄ θ̄ + bLθ̄ θi

= AL + bLθ̄ θi (12)

hi|(θi > θ̄) = aRθ̄ + bRθ̄ (θi − θ̄)
= aRθ̄ − b

R
θ̄ θ̄ + bRθ̄ θi

= AR + bRθ̄ θi (13)

where aL
θ̄
, aR

θ̄
, bL

θ̄
, and bR

θ̄
are the constants and slope coefficients at the

limit θ̄.6

To replicate Figure 2, write a general equation for hi starting at the left
region intercept, AL, by using an indicator function equal to one when p = 1:

hi = AL + bRθ̄ θi + (bLθ̄ − b
R
θ̄ ) θi 1{p = 1} (14)

Equation 14’s slope coefficient order, (bL
θ̄
− bR

θ̄
), is for the deductible case,

where the p = 0 region is the right-hand side. Equation 14 solved for hi(p =
1) and hi(p = 0):

hi(p = 1, θi) = ALθ̄ + bLθ̄ θi (15)

hi(p = 0, θi) = ALθ̄ + bRθ̄ θi (16)

In this application, I use percentage change elasticity. This is to account
for the fact that enrollees are moving from a no coverage region into a full
coverage region.7 Elasticity, η, of moving from full out-of-pocket into full
coverage is:

6Refer to the appendix for a construction of the estimator using the parametric form
of the general utility model. In this case, the coefficients can be built out of structural
parameters.

7Given the extreme change in marginal price, percentage change is more informative
than a midpoint elasticity, although other applications with smaller price changes could
certainly use Equation 14 in midpoint formula if so desired. Aron-Dine et al. (2013) use a
midpoint formula, for example.
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η =
%∆hi
%∆p

=

[
hi(p = 0, θi)− hi(p = 1, θi)

hi(p = 1, θi)

]
/

[
0− 1

1

]
=
−
[
AL
θ̄

+ bL
θ̄
θi − (AL

θ̄
+ bR

θ̄
θi)
]

AL
θ̄

+ bR
θ̄
θi

=
−(bR

θ̄
− bL

θ̄
) θi

AL
θ̄

+ bR
θ̄
θi

(17)

Which evaluated at θ̄ is equal to:

η = −(bRθ̄ − b
L
θ̄ )
θ̄

h̄
(18)

The case of a Health Savings Account (HSA), where patients face opposite
marginal prices, reverses the order of bL and bR slope coefficients.

4. Data

4.1. Data

The dataset is proprietary claims-level data for an employer with several
locations. The employer is self-insured and all individual claims are reported
for each of the three years 2002, 2004, and 2005.8 Each claim entry con-
tains all information necessary for classifying the services received and to
remit payments. Each claim has information on the costs incurred by the
patient and the amount covered by the employer, as well as information on
the treatment facilities, procedure codes, and diagnoses. An advantage of a
self-insured employer is that income information is available to identify the
socioeconomic status of the population.

In particular, I study the Consumer-Driven Health Plan (CDHP) option
available to enrollees, which is a high-deductible plan. Enrollees had the
option to enroll in four other plans offered by the employer. The effect this
may have on estimates comes through in the broader generalizability of the

8In the years 2002-2005, missing enrollee assignment codes in 2003 prevented using this
year in estimation.
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type of enrollees who chose this plan, but not in the estimates within the
plan. I show that this estimation method is not subject to selection bias
for within-plan estimates. Characteristics of patients enrolled in this plan
determines the broader applicability of these elasticity estimates.

The CDHP plan contains two nonlinearities. The first nonlinearity re-
sults from an employer-funded Health Savings Account (HSA), where the
employer deposits funds that can be used to purchase health care from the
first dollar spent until the patient exhausts the HSA. The second nonlinearity
is a deductible. Figure 3 illustrates the nonlinear structure of this plan.

health 

expenditure ($) 

patient out-of-

pocket cost ($) 

full   

coverage           

HSA 0 

full               

out-of-pocket 

full 

coverage 

deductible 

full               

out-of-pocket 

full 

coverage 

(a) CDHP in levels

health 

expenditure ($) 

patient marginal 

price ($) 

full   

coverage           

HSA 0 

full               

out-of-pocket 

full 

coverage 

deductible 

1 

(b) CDHP in marginal cost

Figure 3: Nonlinear Pricing Schedule, Consumer Driven Health Plan

The threshold levels of both the HSA and the deductible change from
year to year. This variation in nonlinearity thresholds helps identify patients’
responses to the nonlinear pricing schedules in two ways. If the nonlinearity
changes each year, this lends robustness to the estimation method if estimates
remain similar over years. Second, the estimator has strong validity for
observations just at the nonlinearity, but validity is limited for observations
far from the nonlinearity. However, with estimates at proximate intervals,
elasticity is estimated over an expanded range of expenditures. Table 1 lists
plan nonlinearities during the years 2002, 2004, and 2005.

Table 2 reports plan summary statistics for patients who enrolled under
single coverage for the entire 12-month benefit period. The first rows report
the yearly means and medians of total expenditure, employer cost, the yearly
means of the amount of HSA used, and the amount of deductible fulfilled.
Average total expenditure for all three years was $7,387. However, health
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Table 1: Consumer Driven Health Plan (CDHP) structure

First nonlinearity Second nonlinearity
Year HSA Deductible
2002 $500 $1,250
2004 $750 $1,500
2005 $600 $1,500

expenditure distributions tend to be skewed, so median total expenditure
was lower in all years. Lower expenditure levels of employer cost compared
to total expenditures reflect positive out-of-pocket costs to patients. Patient
expenditure variables in Table 2 include the amount of the deductible ful-
filled and the amount of the HSA used. An average patient’s total incurred
spending towards his deductible was $644. The average amount used of the
HSA on incurred spending was $319.9

Patient-level characteristics for single-coverage, full-year enrollees in the
insurance plan are reported in the bottom rows of Table 2. Plan enrollment
in this category grew from 165 enrollees in 2002 to 349 in 2005. The average
age over all three years is 48, and the average salary for the enrollees is
$55,934. The plan enrolled 72 percent women.

5. Elasticity Estimation Results

I estimate elasticities over patients’ yearly expenditures within the esti-
mation windows for each of the three years. Yearly estimates are necessary
because the level of the nonlinearities, and thus the threshold θ̄, changes ev-
ery year. Table 3 displays the results for the first plan nonlinearity, the HSA.
Table 4 displays results for the second nonlinearity, the deductible. I calcu-
late standard errors using the asymptotic distribution properties developed
in Bajari et al. (2010).10

9The first year this plan was available was 2002, which explains the lower enrollment
statistics and associated spending levels. An advantage of several years is that results
can be compared across several years if there is concern that the first year was different
because of its novelty.

10In this method, the difference between the true limit of the expenditure choices and the
estimated value of this limit from above and below converges to an independent exponential
variable with hazard rates of f−(hL) from below and f+(hR) from above. The local linear
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Table 2: Data Summary for Full Sample

Year 2002 2004 2005 Overall
Average Expenditures

Total Expenditure $5,251 $7,130 $8,647 $7,387
(median) $1,492 $2,024 $2,288 $2,016

Employer Cost $4,852 $6,560 $7,824 $6,746
(median) $990 $1,551 $1,899 $1,537

Deductible Used $540 $665 $672 $644
HSA Used $257 $377 $292 $319

Demographics
Enrollees 165 341 349 855
Percent Female 71 72 72 72
Age 46 48 48 48
Salary $58,783 $51,224 $58,965 $55,935
Single coverage 100% 100% 100% 100%

Includes only single coverage, full year enrollment.

The heading of Table 3 reports the elasticity formula from Equation 18,
arranged for the HSA nonlinearity. The first column of Table 3 reports
the year, and the second column is the number of observations within the
estimation window around the HSA. The third column reports the level of
the HSA in that year. The final column reports elasticity estimates.

The elasticity estimates around the HSA nonlinearity are -0.25 in 2005,
-0.26 in 2004, and -0.33 in 2002. All are inelastic. The similarity across
years is noteworthy because the nonlinearity value of h̄ changes across years
between $500 and $750. The estimates reported in this paper are for a
$300 window and based on an Epanechnikov kernel, but are robust to other

regression slopes bL
θ̄

and bR
θ̄

are then the inverse of these hazard rates, respectively. The
hazard rates are estimated from the data with a one-sided kernel density. The difference
between the estimated and true value of the difference in the slopes, (bL

θ̄
− bR

θ̄
), converges

asymptotically to a normal distribution with variance calculated using f−(hL), f+(hR),
and properties of the chosen kernel.
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Table 3: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at HSA nonlinearity

Year N Measured at Elasticity (η)
2002 39 $500 -0.33**

(0.15)
2004 55 $750 -0.26***

(0.07)
2005 61 $600 -0.25**

(0.12)

Standard errors in parentheses.

***,**,* denotes significance at 1, 5, 10 percent level.

specifications.11

Table 4 reports the elasticity estimates at the deductible, the plan’s sec-
ond nonlinearity. The first column reports the year, the second column
records the number of observations in the estimation window around the
deductible, and the third column reports the level of the deductible in that
year. The last column reports the elasticity estimates. The lower significance
level of these estimates is due to the small sample size at the higher expendi-
ture levels of the deductible. The elasticities at this nonlinearity are highly
inelastic. The elasticity is -0.09 in both 2002 and 2005, and -0.08 in 2004.

5.1. Discussion

These estimates place consumers in the inelastic region of demand, con-
firming common sense about health care being a necessary good. The es-
timates at the HSA are slightly higher than the RAND Health Insurance
Experiment estimates. However, the estimates at the deductible are slightly
lower then the RAND HIE. The RAND HIE found elasticities between -0.17
and -0.22, but calculated over the whole spending range instead of local esti-
mates at different spending levels Keeler and Rolph (1988). Aron-Dine et al.
(2013) give a nice discussion of different approaches to elasticity calculation
in the RAND HIE. Most similar to the framework here, the authors show

11See the appendix for local linear regressions using different window sizes in the ranges
of [250, 400] and different bandwidth choices for Gaussian and Uniform kernels.
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Table 4: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at Deductible nonlinearity

Year N Measured at Elasticity (η)
2002 22 $1250 -0.09

(0.17)
2004 40 $1500 -0.08*

(0.05)
2005 34 $1500 -0.09

(0.06)

Standard errors in parentheses.

***,**,* denotes significance at 1, 5, 10 percent level.

that HIE participants switching from free care to a 95% coinsurance had
an elasticity of approximately -0.23. The advantage of this approach’s local
estimation is it sidesteps the limitations of calculating a single price for a
complex range of expenditures and nonlinearities in plans.

Given the deductible framework in this paper, the most appropriate lit-
erature comparisons are those examining the changes from full insurance to
none, or vice versa. Boes and Gerfin (2013) compare a managed care plan
with temporary full insurance against recently introduced cost-sharing mea-
sures. The authors also find elasticity decreasing for higher levels of health
expenditures, with an average elasticity of -0.148, after adjusting for selection
out of the HMO.

Outside of the RAND HIE, previous literature estimates elasticities for
a range of types of health expenditures. Among the estimates that apply
specifically to general medical expenditures, Cherkin et al. (1989) found pri-
mary care physician visits responded the most to the introduction of a $5
copay. Visits decreased by approximately -10% for what was approximately
15% of a typical visit charge. This response may be slightly larger than the
estimates in my data, but the Cherkin et. al data came from an HMO where
primary care physician’s roles as gatekeepers imply a higher time cost per
visit as a baseline comparison. Selby et al. (1996) found a -14% decline in
emergency room visits from a much larger copay introduction of $25-$35.
The elasticity implied by these numbers is slightly less responsive than those
presented above, which follows from emergency room visit versus physician
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visits.
Claims-level data allows us to look more closely into why these local

elasticities are different at different points of the spending distribution. Es-
timates are more inelastic at the higher deductible nonlinearity compared
with the HSA nonlinearity. The first explanation for this may be because a
higher level of expenditures means a higher level of illness severity, which is
associated with less price sensitivity. To examine this hypothesis, Tables 5
and 6 compare facility types and services in the HSA local estimation window
versus the deductible local estimation window.

Table 5 shows the percentage of expenditures within the local estimation
window for a given facility type, comparing the HSA and deductible estima-
tion windows. For both windows, physician offices are the largest category
of spending. However, physician offices are a much higher percentage of ex-
penditures in the HSA window, at 70 percent compared to only 58 percent
around the deductible. More claims in the deductible take place at more
intensive facilities compared to the physician office. Hospital Outpatient fa-
cility use is one of the more striking differences between the two estimation
samples. Hospital Outpatient facilities were 8 percent of expenditures in the
deductible, which is double the percent found in the HSA sample. This in-
dicates the higher deductible spending levels are correlated with more severe
health shocks, which leads to lower price sensitivity.

The services reported by patients’ claims also suggest increasing severity
toward the deductible, as well as an indication that spending may be less dis-
cretionary and more lumpy as the mix of services changes between the HSA
region and the deductible region. Table 6 reports the percentage of expen-
ditures in the top 5 services in the estimation windows. The two estimation
windows both show significant spending in Lab/Pathology, X-Ray Diagnos-
tics, and Vision services. However, the HSA region shows a combined total
of 32% spending on Physician Care and Routine Physical services, neither
of which make the top five at the deductible estimation window. Patients
have a greater ability to control the amount of Routine Physical services, in
deciding to complete an annual physical or not. In contrast, the deductible
region begins to have more Surgery services (5 percent), which is a service
that may be less discretionary than Routine Physical.

The broader application of these elasticities depends on the sample popu-
lation and its generalizability to a larger population. This method’s estimates
have a high level of internal validity within the sample population, but the
external validity of these estimates to populations outside the sample re-
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Table 5: Facility Type Comparison: HSA vs. Deductible

Percent Facility Type Expenditures
HSA

70% Physician’s Office $66,137
6% Independent Lab $5,762
5% OB/GYN Office $4,549
4% Hospital Outpatient $4,055

Deductible
58% Physician’s Office $79,312
9% Independent Lab $12,614
8% Hospital Outpatient $10,881
5% Clinic $6,154

Expenditures are total within the local estimation window

Windows are within a $300 window on each side of the nonlinearity

Table 6: Type of Service Comparison: HSA vs. Deductible

Percent Service Type Expenditures
HSA

22% Physician Care $20,518
19% Lab/Pathology $17,536
13% Vision $12,398
12% X-Ray Diagnostic $11,252
10% Routine Physical $9,710

Deductible
19% Lab/Pathology $25,902
13% X-Ray Diagnostic $18,402
8% Psychotherapy $11,377
6% Vision $8,849
5% Surgery $7,494

Expenditures are total within the local estimation window

Windows are within a $300 window on each side of the nonlinearity
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quires further discussion. There are two points of general applicability of
this sample population. First, the spending levels are typical of the median
spending of a privately insured individual under 65 during the time period.
U.S. median health expenditure was $1,032 in 2005 (AHRQ (2005)), which
lies between the expenditure levels of the HSA estimates ($500 - $750) and
the deductible estimates ($1250-$1500). Comparing these estimates to pre-
vious work also should be restricted to the mix of services found in these
HSA and deductible ranges. Secondly, the insurance is employer-sponsored,
which is the most common type in the U.S.

There are a few ways in which this population may not translate to a more
general U.S. health care population. The patients in this sample are richer
than the average U.S. population, thus elasticity for a general population
may be lower if income effects hold. Additionally, the patients in the sample
population are, on average, healthier than the firm’s population as a whole.12

If the severity of health shocks is lower than a more general privately-insured
population, these elasticity estimates may show patients to be more respon-
sive to marginal prices if elasticity decreases with the severity of a health
shock. Finally, willingness to participate in a high-deductible plan could
have implications for the risk-aversion parameters of patients. In a study
on individuals in private insurance, van de Ven and van Praag (1981) find
that increasing income and education correlate positively with demand for a
deductible.13 Given these caveats, these estimates are most useful as a local
elasticity, but are not atypical of expenditures in U.S. employer-sponsored
plans.

12This data is similar to the national statistics on enrollees in Consumer Driven Health
Plans. Enrollees in CDHPs tend to be richer, more educated, and healthier than their
counterparts in other employer-sponsored plans Kaiser Family Foundation (2006). The
Kaiser Family Foundation’s 2006 Survey of CDHP enrollees found that 45 percent of
CDHPs enrollees had salaries over 75,000, compared with 30 percent of the control group
of employer-sponsored enrollees in other plans. 64 percent of CDHP enrollees reported
being in excellent or very good health, compared with 52 percent in the control group.

13Einav et al. (2012) develop a model where patients select an insurance plan based
on both aggregate risk and the “slope” of the pricing structure. This suggests that there
may be selection into high-deductible plans based on the pricing schedule in addition to
expected total out-of-pocket costs. Given this model, the patients selected into a CDHP
plan may be less price-responsive than a general population. This could bias my final
estimates downward compared with a general population.
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5.2. Robustness

The identifying assumption in the estimation method is that the latent
error term, θ, is continuous across the nonlinearity but the price changes.
In this application, the latent error is accumulated health shocks over the
year of the insurance pricing structure. The θ term should be capturing
differences in these accumulated health shocks within a $300 window on each
side of the spending level of each nonlinearity, but of which are below $2,000.
The resulting elasticity can be interpreted as a local interaction of health
shocks and the pricing structure. Although claims-level detail is not strictly
necessary to implement the estimation method, we can use detail on patient
claims to verify that these estimates are capturing reactions to accumulated
health shocks within a narrow window of final expenditures, and not fixed
characteristics such as age and gender.

As discussed in the estimation section, the accumulated health shocks
θ are the forcing variable into pre- or post-nonlinearity region. Since age
and gender are not health shocks within a $400 window, but instead a fixed
endowment, Tables 7 and 8 test if there is selection on age and gender on
either side of the nonlinearity.14

Table 7 shows the results of both a means test and K-S test for differences
in the distribution of ages and gender on each side of the HSA estimation
sample. None of the tests can reject the hypothesis that distributions of age
and gender are the same on each side of the nonlinearity. For each year, I
use a means test to compare the average ages of sample individuals that fall
pre-HSA versus post-HSA. Besides just the mean, I also run a K-S test of
equality of distributions comparing the age distribution just before versus
just after the HSA nonlinearity. Both the means test and the K-S tests
cannot reject equality of the age distribution in the pre versus post HSA
samples, up to a 15 percent confidence level. The bottom half of Table 7
performs the same tests on the gender ratios and cannot reject equality for
at least the 15 percent level for 2004 and 2005, and at least the 10 percent
level for 2002.

Table 8 tests for equality of distributions in age and gender at the higher
nonlinearity threshold of the deductible. Neither the means tests or the K-

14Age and gender likely enter the patient’s problem in the initial choice of plan, as a
fixed health status level. In the estimation window, the change in the θ variable maps to
a forcing variable within a narrow window of expenditures– the patient’s age and gender
would enter as a fixed effect.
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Table 7: Testing for Differences in Age and Gender in Estimation Sample:
Before vs. After HSA

Year N Means test K-S Test Result
Age

2002 39 t = −1.60 D = 0.31 Cannot Reject*
(p = 0.12) (p = 0.25)

2004 55 t = −1.20 D = 0.20 Cannot Reject*
(p = 0.23) (p = 0.54)

2005 61 t = 0.17 D = 0.21 Cannot Reject*
(p = 0.87) (p = 0.45)

Gender
2002 39 t = 1.51 D = 0.24 Cannot Reject**

(p = 0.14) (p = 0.54)
2004 55 t = 0.08 D = 0.01 Cannot Reject*

(p = 0.23) (p = 1.00)
2005 61 t = −0.07 D = 0.01 Cannot Reject*

(p = 0.95) (p = 1.00)

T-statistics for means tests between before and after HSA nonlinearity.

D-statistics for Kolmogorov-Smirnov test of distributional equivalence.

P-values in parentheses under the respective statistics.

*, ** – Test is not significant at the 15 percent level or below, 10 percent or below.
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S test for equality of age can be rejected for 2002-2005, for at least a 15
percent confidence level. The only test to come close to showing significant
differences pre deductible and post deductible is the means test on gender
for 2005, which still is not significant at the 5 percent level.

Table 8: Testing for Differences in Age and Gender in Estimation Sample:
Before vs. After Deductible

Year N Means test K-S Test Result
Age

2002 22 t = 0.12 D = 0.23 Cannot Reject*
(p = 0.91) (p = 0.95)

2004 40 t = −0.36 D = 0.20 Cannot Reject*
(p = 0.23) (p = 0.76)

2005 34 t = −0.67 D = 0.33 Cannot Reject*
(p = 0.51) (p = 0.21)

Gender
2002 22 t = −0.91 D = 0.21 Cannot Reject*

(p = 0.37) (p = 0.98)
2004 40 t = −0.36 D = 0.05 Cannot Reject*

(p = 0.72) (p = 1.00)
2005 34 t = −1.85* D = 0.26 Cannot Reject***

(p = 0.07) (p = 0.49)

T-statistics for means tests between before and after HSA nonlinearity.

D-statistics for Kolmogorov-Smirnov test of distributional equivalence.

P-values in parentheses under the respective statistics.

*, *** – Test is not significant at the 15 percent level or below, 5 percent or below.

One possibility for why a patient crossed over the threshold that is not
consistent with the model above is that final claims were for a more ex-
pensive doctor, which would mean that elasticity estimates were capturing a
geographic effect, not a response to health shocks. Therefore, another robust-
ness check compares the location of services before and after the nonlinearity.
As such, Table 9 compares service zipcodes on each side of the HSA limit
in the estimation sample for the two years when zipcode information was
available. In 2004, the top three zipcodes were identical on each side of the
nonlinearity. In 2005, two of the top three zipcodes were the same. The
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non-matched zipcodes on each side were bordering zipcodes in a metropoli-
tan center; one of the zipcodes is for business addresses in the zipcode area.
This is support that differences in doctors is not the heterogeneity forcing
patients on one side or the other of the nonlinearity.

Table 9: Zipcode Comparison within the HSA Estimation Window

Pre-HSA Post-HSA Pre-HSA Post-HSA
2004 2005

Expenditure xx480 xx480 xx440 xx480
Locations- xx455 xx455 xx404 xx485
Partial zipcode xx440 xx440 xx480 xx440

Expenditure location is ranked by total annual expenditures.

Zipcode not available for 2002.

For the deductible estimation sample, Table 10 shows several common
zipcodes appear in on each side of the deductible. The zipcodes xx480 and
xx440 are different business addresses in the same metropolitan center, so
the most common zipcodes in both years before and after the nonlinearity
are also from the same geographical area. Some of the differences in the
deductible variety of zipcodes may be attributed to the increased diversity
of services present in claims at the deductible, as shown in the discussion
section and Table 6.

Table 10: Zipcode Comparison within the Deductible Estimation Window

Pre-Deduct. Post-Deduct. Pre-Deduct. Post-Deduct.
2004 2005

Expenditure xx480 xx440 xx440 xx440
Locations xx440 xx403 xx480 xx485
(Partial zipcode) xx812 xx435 xx486 xx480

Expenditure location is ranked by total annual expenditures.

Zipcode not available for 2002.

Finally, another concern about the patients in the nonlinearity estimation
windows is that these patients might simply have run out of time to file in-
surance claims as the year ended compared to patients outside the estimation
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window. However, although December is the most common month of last
claim both in and out of the estimation sample, less than 40 percent of the
patients in the estimation sample filed their last claim in December. There
was a positive number of patients in the sample showing a last claim in every
month of the year, with increasing probability of a last claim as the year
progressed. This pattern is consistent with the larger population’s month of
last claim data.15

6. Moral Hazard Estimation

6.1. Setup

Plans with high reimbursement rates are often cited as inducing over-
consumption and moral hazard because the patient bears very little of the
cost of his health care. This refers to ex-post moral hazard, where patients
consume more health care because insurance insulates them from its cost.
Demand elasticities are often used as a proxy for ex post moral hazard. I
take this further by measuring the welfare impact between observed expendi-
tures in my generous plan with predicted patient expenditures faced with full
out-of-pocket costs. Elasticity measures reveal patients’ responses to price.
This counterfactual gets closer to what policy makers are really interested
in, which is the deadweight loss of insurance-induced demand changes.

To measure the amount of deadweight loss,the extent of moral hazard,
I compare patient choice in two scenarios. The first scenario is a generous
insurance plan, which covers 100 percent of care. In the second scenario, all
care is paid for out-of-pocket for the same range of expenditures.16 Figure 4
illustrates the basic concept behind the deadweight loss calculation. When
the consumer is fully insured and pays zero percent of his out-of-pocket costs,
the consumer’s choice of health care, hi1, gives him consumer surplus of
A + B + C. The insurance company pays for the entire cost of this choice
of health care, which amounts to B + C + D. Net welfare in the free care
scenario is (A−D). I predict the consumer’s choice, hi2, if paying 100 percent

15See Appendix for a histogram of month of last claim for each population.
16In these scenarios, I use only changes in coinsurance. Although premiums are also

part of an insurance plan, choosing the changes in premiums between the two scenarios
would require several other assumptions on patient responses and how actuarially fair the
insurance plan is. The two scenarios going from full coverage to no coverage with no
change in premiums create an upper bound on the amount of moral hazard.
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of the cost, with consumer surplus equal to A+B. In this second scenario the
cost of care is the area B. Net welfare in the full out-of-pocket scenario is A.
Thus, the area D is the amount of deadweight loss. To get a measure of the
deadweight loss D, I take the change in expenditure between full insurance
and full out-of-pocket, C+D, and subtract out the transfer the patient would
need to compensate him for the loss of C in the full out-of-pocket scenario.

OOP 

price 

Health Expenditures 

A 

D B C 

MB 

MC 

Figure 4: Patient Choice and Welfare in Counterfactual

For empirical estimation of the reduction in health expenditure choice, I
link each value of the estimated θi to observed full coverage health expendi-
ture, hi1. I then use the slope coefficients estimated in Section 5 to predict
the counterfactual spending of each patient given full out-of-pocket payment,
hi2. I use only those patients from the original HSA estimation window for
the moral hazard calculation, and I assume a constant elasticity around the
nonlinearity. This HSA window is the most reasonable for calculations ab-
stracting from income effects.

To calculate the compensating transfer for each patient, I use the following
utility function for the choice of health expenditure. Utility is based on
the conditions set on the general utility function in Section 2, where the
preference parameters satisfy ρ ε (0, 1) and γ > 0:

Ui(hi, θi, ci) = θih
ρ
i + (1− θi)ci − γ hi (19)

The parameters θi, hi, and c have the same interpretation as in the gen-
eral mode. The γ parameter captures nonmonetary costs of health care, such
as time, and satisfies Condition (2) of the utility conditions in Section 2. The
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utility function is decreasing in illness as long as hρi < ci.
17 Utility is increas-

ing in health care expenditures up to marginal utility of zero, and marginal
utility is decreasing in additional health expenditures. The final Condition
(5) of the Utility Conditions holds that health care increases utility by a
greater amount at higher levels of illness. I use individual salary information
for non-health composite good consumption.

The two remaining unknowns in the utility function are: the risk-aversion
parameter on health care expenditures, ρ, and the nonmonetary cost of health
care, γ. I estimate these parameters from the data using a general method
of moments approach which chooses parameters which minimize the differ-
ence between observed utility values and the predicted utility value in the
counterfactual. The estimated values for ρ̂ were approximately 0.23 and for
γ̂ were approximately 0.31.18.

The compensating transfer C between the two scenarios is the amount
of additional non-health care income the patient needs to remain indifferent
between his utility consuming hi1 and his utility consuming only the lower
hi2. The transfer C enters the utility function as additional income in the full
out-of-pocket cost scenario. I set the two scenarios’ utility functions equal to
each other, and solve for C. The compensating transfer is then a function of
known variables: estimated θi, ρ̂, and γ̂, observed hi1, and predicted hi2.

Ci(hi1, hi2, θi, ρ̂, γ̂) =
θi

(1− θi)

(
hρ̂i1 − h

ρ̂
i2

)
− γ̂

(1− θi)
(hi1 − hi2) (20)

The compensating transfer is decreasing in ρ̂. This means that the size
of the compensating transfer decreases as a patient becomes less risk adverse
in health care expenditures. The compensating transfer is also decreasing in
γ̂, indicating that the amount of compensation for lost health care decreases
as the nonmonetary costs of the foregone care increase.

6.2. Moral Hazard Estimation Results

The measure of deadweight loss of moral hazard here is an upper bound,
because it compares full coverage with no coverage. The deadweight loss is

17This condition always holds in my data, because ci is the salary left after health care
expenses, expenditure is less than $1,000 in the window, and ρ < 1.

18See the Appendix for further discussion of the GMM and tables of the utility parameter
estimates
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the portion of the difference in health expenditures where the marginal cost
is greater than the patient’s marginal utility – the part of the change that
the patient does not require back in compensating transfer.19 Table 11 dis-
plays the empirical results of the counterfactual in levels. The magnitude of
deadweight loss is highest in 2004, which corresponds to the highest spending
window. The HSA cutoff was $750 in 2004 versus $600 and $500 in the other
years. The median level of deadweight loss was approximately $66 in 2002,
$134 in 2004, and $26 in 2005.

Table 11: Deadweight Loss Magnitude

Year p25 p50 p75

Level ($)

2002 9.65 66.26 144.94
2004 46.88 133.88 185.97
2005 9.63 25.88 64.38

Percent of Spending (%)

2002 4.75 20.29 31.68
2004 9.16 21.64 27.19
2005 2.68 6.59 12.65

To put the magnitude of the deadweight loss in context, Table 11 also
reports the deadweight loss as a percentage of each patient’s free-care level
of spending. The median percentage of free-care spending level was approx-
imately 20% in both 2002 and 2004. The median percentage was lower in
2004, at approximately 7%. Patients at the beginning of the estimation
window had the smallest change in spending, and thus the lowest levels of
deadweight loss. The 25th percentile for deadweight loss as a percentage of
spending was 2.68% in 2005, 4.75% in 2002, and 9.16% in 2004. The upper

19The deadweight loss in the moral hazard calculation uses the observed charge to the
insurer as marginal cost. It is likely that the observed charge to the insurer is different than
the true cost of providing the care. This true cost is often difficult to observe even with
more detailed provider-level data. If the insurer is making a profit margin above marginal
cost on the amount listed in the claims data, then the deadweight loss measure will be an
upper bound on moral hazard measured as marginal benefit greater than marginal cost.
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end of the distribution was deadweight loss at a value of approximately 30%
of free-care spending in 2002 and 2004. The 75th percentile in 2005 was
12.65%.

Previous estimates of moral hazard in health expenditures have focused
on pure coinsurance elasticities. (See Newhouse (1993), Scitovsky and Sny-
der (1972), Phelps and Newhouse (1974), Cherkin et al. (1989), Huang and
Rosett (1973)) This measure of moral hazard is more nuanced than an elas-
ticity it takes into account the marginal value of health expenditures the
consumer gains, so not all increases in expenditure are moral hazard. To
compare this counterfactual deadweight loss to previous estimates, we ex-
pect pure elasticity measures of moral hazard be larger than this deadweight
loss from generous insurance.

Existing estimates on changing from full insurance to no insurance have
been measured both in natural experiments and the RAND Health Insur-
ance Experiment (HIE). Scitovsky and Snyder (1972) used an exogenous
change in the coinsurance rate from free care to approximately 25 percent
coinsurance to find that health expenditures decreased by approximately 25
percent. Similarly, Scheffler (1984) used a pre-post design on the introduc-
tion of 40 percent coinsurance to outpatient care and found that expenditures
decreased by approximately 38 percent. Both of these percent decreases are
close to the deadweight loss percentages presented above. Assuming similar
patient populations, my estimates should be smaller than the previous stud-
ies without marginal utility adjustment. However, my counterfactual also
measures a larger price change – going from full insurance to zero insurance.
The RAND HIE is a closer match. Keeler and Rolph (1988) found that care
almost doubled going from no insurance to full insurance in the RAND HIE.
To compare the HIE findings to the deadweight loss above, the HIE found
that original expenditures decreased by half when patients had to pay full
out-of-pocket costs, and the median deadweight loss of my estimates is 20
percent of original expenditures. This implies that less than half of the HIE’s
change in expenditures was inefficient moral hazard.

The deadweight loss estimates above are of interest to policy makers
concerned with the transition from first-dollar coverage plans to higher out-
of-pocket costs for patients. The results above suggest the upper bound on
moral hazard savings are, on average, 20 percent. These results apply to a
population of group-insurance patients with relatively low levels of spending.
The results also suggest that the introduction of these high deductible plans
had welfare-improving effect for this population in the lower regions of patient
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spending, though savings seemed to top off at less than approximately 30
percent of existing spending.

7. Conclusion

This paper addresses two goals. The first goal is to outline a method
to measure consumer demand elasticity in the presence of nonlinear pricing
by using a nonlinearity to control for unobserved heterogeneity. The second
goal is to apply this method in patient-level data and calculate a health
expenditure elasticity at two different expenditure points. I then use this
elasticity to measure the extent of moral hazard in insurance.

This paper presents an estimation method which isolates consumers of
similar unobserved heterogeneity, but who face different prices. The ob-
served distribution of expenditures reveals the underlying distribution of the
unobserved heterogeneity. This empirical inverse cdf of expenditures iden-
tifies the slope of the relationship between an index of heterogeneity and
resulting expenditure choices. The method then calculates this slope on each
side of a nonlinear change in marginal prices. The estimation uses a flexible
specification of a local linear regression. As the slope of these local linear
regressions between expenditures and unobserved heterogeneity approaches
the nonlinearity from each side, the underlying unobserved characteristics
become similar. Thus, as the limit approaches the nonlinearity point from
each side, the difference in the slopes identifies the consumer’s response to a
change in prices. Applying this method to patient data, the resulting demand
elasticity estimates in health insurance data are consistent across all three
years of study, at approximately -0.26. The elasticity estimates apply to pa-
tient behavior in employer-sponsored insurance over ranges of expenditures
less than $1,000.

In a counterfactual scenario, this elasticity is used to calculate the com-
pensating transfers of going from full coverage to full out-of-pocket payment.
The difference between the compensating transfer and the change in expen-
diture predicted by elasticities reveals a measure of the deadweight loss of
moral hazard. The extent of moral hazard in my data is, on average, 20 per-
cent of full-coverage expenditures, for expenditures less than approximately
$1,000. This measure provides insight beyond existing moral hazard mea-
sures by netting out positive marginal benefit to the consumer lost by the
reduction in health expenditures.
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The major contributions of this paper are threefold. First, I create a flexi-
ble estimation method that can be used in consumer contract datasets where
nonlinear pricing introduces bias. This method presents less restrictive be-
havioral assumptions and data requirements than previous methods. Second,
because nonlinearities are present in many sectors of policy importance, this
method offers another tool for estimating elasticities in specific populations
or along expenditure distributions where local price changes occur. Finally,
I produce an elasticity estimate applicable to patients in employer-sponsored
insurance plans, the most common type of insurance coverage in the U.S.
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Appendix

Table A1: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at HSA nonlinearity: different kernels
Kernel Rule

Year Measured at Epanechnikov Gaussian Uniform
2002 $500 -0.33 -0.31 -0.39
2004 $750 -0.26 -0.25 -0.36
2005 $600 -0.25 -0.24 -0.31

Table A2: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at deductible nonlinearity: different kernels
Kernel Rule

Year Measured at Epanechnikov Gaussian Uniform
2002 $1250 -0.09 -0.10 -0.06
2004 $1500 -0.08 -0.08 -0.12
2005 $1500 -0.09 -0.11 -0.11
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Table A3: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at HSA nonlinearity: Different windows
Window size

Year Measured at 250 300 350 400
2002 $500 -0.31 -0.33 -0.32 -0.31
2004 $750 -0.29 -0.26 -0.27 -0.26
2005 $600 -0.19 -0.25 -0.28 -0.33

Table A4: Elasticity Changing from Full Out-of-Pocket to Full Coverage

Estimates at deductible nonlinearity: Different windows
Window size

Year Measured at 250 300 350 400
2002 $1250 -0.08 -0.09 -0.09 -0.15
2004 $1500 -0.11 -0.08 -0.10 -0.15
2005 $1500 -0.07 -0.09 -0.10 -0.08
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Figure A1: Month of Last Claim In-Window and Out-of-Window
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Moral Hazard Counterfactual:
Solving the utility maximization problem listed in Section 6 with full

coverage yields an equation for optimal hi1 in terms of ρ and γ. I estimate
these two parameters by choosing the values that minimize the difference
between observed and iterated estimation scenarios. The observed health
expenditures are where insurance was full coverage. The iterated estimated
values are for hi1(ρ, γ) formed by substituting in different values for param-
eters ρ, γ into the model’s utility function that predicts health expenditure
choice. The values which minimize the difference between the observed and
predicted values of health expenditure choice are optimal ρ̂, γ̂. Varying num-
ber of iterations on a grid search produced very similar estimates for ρ̂ and
γ̂. Table A5 lists the parameter estimates for three of these grid searches.

Table A5: Utility Parameter Estimates

Grid size Year ρ̂ γ̂
30x30 2002 0.23 0.28

2004 0.37 0.31
2005 0.23 0.31

40x40 2002 0.22 0.29
2004 0.45 0.34
2005 0.24 0.31

50x50 2002 0.20 0.27
2004 0.30 0.29
2005 0.23 0.31
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In this appendix, I lay out a flexible parametric form for the utility func-
tion of the patient and solve explicitly for the patient’s decision rule.

Consider the following general utility function which satisfies utility con-
ditions (1) - (5) from Section 2:

U(h, θ, c) = u(h, θ) + c

= γθ + αθhβ − τh+ c (A1)

Where γ is a parameter on the health shock, α is the parameter on the
interaction of the health shock and health expenditures, β is the patient’s
risk parameter, and τ is the parameter on the time inconvenience from going
to the doctor or from utility-reducing levels of health care.

Utility conditions (1), (3), and (5) are clearly satisfied. Condition (2)

is satisfied with hmaxθ =
[
αβθ
τ

] 1
1−β . Condition (4) is satisfied with γ small

enough, such that γ < αhβ.
The corresponding optimal decision rule is:

h∗ =

[
αβθ

1− p+ τ

] 1
1−β

(A2)

Recall the reimbursement schedule with a deductible, h̄, and resulting
MC schedule as described in Section 2:

MC = 1− p =

{
1 if h ≤ h̄

0 if h > h̄

Given the reimbursement schedule and a health status of θ, the corre-
sponding optimal h∗ in each marginal cost section is:

h∗ =


[
αβθ
τ+1

] 1
1−β if h∗ ≤ h̄[

αβθ
τ

] 1
1−β if h∗ > h̄

(A3)

Notice that the optimal h∗ that is chosen in the first part of the reimburse-
ment schedule, where all health expenditure must be paid fully out-of-pocket,
is smaller than the h∗ that is chosen in the second part of the reimbursement
schedule, where all additional units of expenditure are fully covered by the
insurance plan.

Because the decision rule for the choice of h is strictly increasing in θ as
θ approaches the nonlinearity, the decision rule can be written in terms of
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θ̄, where θ̄ is the value of θ that corresponds to the nonlinearity, h̄. For this
reason, the indicator function 1{h ≤ h̄} can be written as 1{θ ≤ θ̄}, and vice
versa for the right-hand side of the nonlinearity.

Equation A3 can be transformed into a linear equation using a Taylor
approximation around θ̄. The linear approximation is:

h =

[
αβθ̄

τ + 1{θ ≤ θ̄}

] 1
1−β

+
1

1− β

[
αβθ̄β

τ + 1{θ ≤ θ̄}

] 1
1−β

(θ − θ̄) (A4)

To construct a local linear regression from Equation A4, estimation occurs
in the neighborhood of the θ̄ term, with the following coefficients:

a(θ) =

[
αβθ̄

τ + 1{θ ≤ θ̄}

] 1
1−β

b(θ) =
1

1− β

[
αβθ̄β

τ + 1{θ ≤ θ̄}

] 1
1−β
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