
• It is a matter of convention which particles are matter and which are anti-matter
• By convention, protons, neutrons, and electrons are all matter

• Neutrinos are tricky, because they are (probably) their own anti-particles
• In the limit of massless neutrinos, you can sort them logically by their spin

• But neutrinos are basically impossible to count anyway
• There could be a surplus of neutrinos or anti-neutrinos, no way to tell

• Photons are their own anti-particles, and hence they don’t count as matter or anti-matter

• We will focus on the baryons
• Looking locally, we discover that in our vicinity (Earth) there is much more matter (baryons) 

than anti-matter (anti-baryons) 

Baryogenesis

Is There More Matter Than Anti-Matter?
Why We Need or Want Baryogenesis



• The Earth is made of matter; what else do we know?
• 99+% of our knowledge of the rest of the universe comes from e.m. waves

• And these tell us nothing about matter vs. anti-matter

• We have sent probes to the Moon, Venus, Mars, Jupiter, Saturn, Titan (moon of Saturn), and 
several asteroids and comets
• No boom

• The solar wind contains lots of protons, and no anti-protons
• The Solar system is all matter

• Modest energy cosmic rays come from throughout our galaxy
• Overwhelmingly matter, not anti-matter

• We see nebulae colliding throughout our galaxy (and within other galaxies)
• No boom

• Any given galaxy is almost certainly all matter or all anti-matter

The Scale of the Baryon Asymmetry (1)



• More powerful cosmic rays come from well outside our galaxy
• These are rare, and we don’t normally see the primary
• We do see various galaxies colliding

• And their gas clouds within them colliding
• No boom

• Almost certainly galaxy groups and clusters are all matter or all anti-matter

• We have even seen galaxy clusters colliding with each other
• No boom

• Probably galaxy superclusters are all matter or all anti-matter

• This suggests that baryon asymmetry exists at least on the ~100 Mpc scale
• Very difficult to imagine any mechanism that segregates it on this scale

• Best guess: The universe is made of matter, not anti-matter, on the scale of the entire visible 
universe

The Scale of the Baryon Asymmetry (2)



• The baryon asymmetry is often given as a
ratio of the number of baryons to photons:

• We should note that nB actually represents the density of baryons minus anti-baryons
• This quantity is conserved, since baryon number is conserved

• As the universe grows, both the density
of baryons and photons scales as a–3

• So this ratio remains constant

• Not exactly, since every time a particle annihilates, the photons get reheated

• Above around 150 MeV, you don’t have baryons, you have quarks
• Every baryon just represents three quarks, so 
• So we have
• Let’s look around the electroweak scale, when geff = 106.75
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• Recall, nq is actually the difference
between the number of quarks and anti-quarks

• At the electroweak scale, all quarks are effectively massless
• If it weren’t for the asymmetry, both photons and quarks would have a density proportional 

to T3

• Times some factors counting
colors, spins, fermions vs. bosons, etc.

• Hence this is just a tiny asymmetry
• But consistent throughout the universe

• For every 266 million anti-quarks, there are 266 million and 1 quarks
• As universe expanded, quarks annihilated anti-quarks
• The tiny surplus of quarks then organized themselves into baryons
• The matter we see is just the tiny remnant left over from this asymmetry

• Can we explain this asymmetry?
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• Can we explain this asymmetry?

• It could just be written into the initial conditions of the universe

• Though if there was inflation, this doesn’t work
• Rapid expansion of the universe would rapidly drop density to effectively zero
• Then reheating at end of inflation would create loads of new quarks and anti-quarks

• The alternative is to start with no baryon asymmetry, and then have it created later

• This is strongly preferred by cosmologists

Possible Types of Explanations
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• Three common symmetries of physics:
• Charge conjugation (C) says that anti-matter behaves the same way as matter

• Parity (P) says that mirror image processes work the same way

• Time reversal (T) says that any process can go in reverse

C, P, and T symmetry
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How to Create a Baryon Asymmetry



• All particle physics theory have to respect CPT
• That is, if you do all three, the process goes just as fast

• But they don’t have to respect them separately

• Strong and electromagnetic interactions are symmetric under C, P, and T

• Weak interactions maximally violate parity P
• Neutrinos always spin a particular way

• Weak interactions in the quarks also slightly violate CP

• But they must satisfy CPT
• And no evidence they don’t

C, P, T and the CPT theorem



Three conditions are believed to be necessary for baryogenesis

• We need to have violation of baryon number
• Obviously, otherwise you can’t create something from nothing

• We need violation of C and CP symmetry
• Otherwise you will make just as many anti-baryons as baryons

• We need to be out of thermal equilibrium
• If you were in thermal equilibrium, then you’d be unmaking baryons about as fast 

as you are making them
• You are in a time-symmetric state (T symmetry)
• By the CPT theorem, you are then in a CP symmetric state
• So you have as many baryons as anti-baryons

What Do We Need For Baryogenesis?



• Any process that is too slow to redistribute energy is out of equilibrium
• At present, for example, neutrinos are not in equilibrium with any other particles

• Weak interactions are too slow to get it in equilibrium

There are two good ways to get a system far from equilibrium:

• Any decay that takes longer than the age of the universe (at that time) will be out of equilibrium
• For example, neutron decay in the early universe

• Any sort of phase transition can be out of equilibrium
• Has to be a first-order phase transition – there is a barrier
• For example, supercooled water

What Sorts of Processes Are Out of 
Equilibrium?



Three and a half ways to create the baryons:

• GUT scale baryogenesis
• Decay of particles from the GUT scale 

• Standard model baryogenesis
• Caused at the electroweak scale
• Probably too small to account for the effect

• Standard model plus supersymmetry

• Neutrino driven baryogenesis
• Caused by decay of heavy sterile neutrinos

Models for Baryogenesis



• Recall at the GUT scale, the strong, weak, and 
lectromagnetic forces all have about the same strength

• Many ideas on how to unify them into a
single force
• Simplest is the original SU(5) theory

• New force particles at the GUT  scale
• For example, X has charge +1/3

• These particles can decay slowly, taking longer than
age of universe at this time
• Out of equilibrium

• These particles also can violate conservation of baryon number
• First decay creates two quarks
• Second creates one anti-quark

Grand Unification Baryogenesis
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Grand Unification Revisited



• Initially, there would probably be equal numbers of X and anti-X particles

• Any decay the X can do, the anti-X’s can anti-do:

• However, most GUT theories have lots of C and CP-violation

• Under these circumstances, the decay rates may not be equal

• As the X’s decay, they would produce more quarks than anti-quarks

• Although the effects would probably be small, we don’t need a big effect, since we are trying to 
get only about a 10–8 disparity

•  Not hard to imagine this would work

Grand Unification and Baryogenesis
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• If GUT scale baryogenesis is right, how do we detect it?
• Should be possible to see baryon violation directly

• Turn the first
reaction around

• Combine them,
and you have proton decay

• Because the X is so heavy, you
need to watch a lot of baryons

• Fortunately, baryons are cheap
• No decays seen so far
• Limit for this process:

Detecting Grand Unification
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• Most particle physics predictions are based on perturbation theory
• Perturbation theory says baryons number is conserved in the standard model
• And we have never seen such baryon violation
• But there are non-perturbative effects that are predicted to violate baryon number
• At low temperature, the probability of

such effects is severely suppressed
• You just aren’t going to see it

• In the 90’s (or so) it was realized that these effects can be
large at high temperatures (above the electroweak transition)

• Objects called sphalerons allow these transitions
to occur at these energies

• As particles pass through a sphaleron,
they get transformed

• There is a net change in baryon number of ±3

Baryon Violation in the Standard Model
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Electroweak Scale Baryogenesis



• We said before we need three ingredients:
• Violation of baryon number
• Out of thermal equilibrium
• C and CP violation

• Sphalerons give you baryon number violation

• Consider the time of electroweak symmetry breaking

• If it is a first order phase transition (barrier to transition) you can get out of equilibrium
• This is under dispute
• Apparently it may just barely be first order

• C and CP violation exist in the quark sector for weak interactions
• But it is very small

Do We Have the Ingredients for Baryogenesis?



not transitioned

transitioned

• As the temperature drops to the electroweak scale, electroweak transition starts
• If it is first order, it will appear as bubbles where the breaking occurs

• Quarks acquire mass as they cross the barrier
• The change in energy can cause them to reflect
• Because of the CP violation in the standard model, it is predicted that there will be

more antiquarks reflected than quarks
• This leaves excess of quarks inside, anti-quarks outside

• Outside the bubble, an excess of anti-quarks can be
wiped out by sphalerons

• In contrast, inside the bubble there are no sphalerons

• We end with a net excess of quarks

How You Might Get Some Baryogenesis
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• In the standard model, all processes with CP violation involve all six quarks
• Including some small masses and small angles

• Attempts to calculate the resulting baryon asymmetry indicate it would be too small
• Much smaller than observed

• Pure standard model baryogenesis probably fails

Standard Model Baryogenesis

Supersymmetric Baryogenesis
• Supersymmetry introduces a host of new particles
• Many of the couplings could have large CP violations
• Since the supersymmetry scale is right near the electroweak scale, we can use similar arguments

• Evidence indicates this could be the origin of the baryons



• To understand neutrino-driven baryogenesis, you first have to understand how masses are made in the 
standard model

• A massless spin ½ particle always moves at c, and comes in two distinct spin types
• A right-handed particle spins clockwise as viewed along its direction of motion
• A left-handed particle spins counter-clockwise as along its direction of motion
• A massive particle must have both types

• Before the standard model was developed,
weak interactions were a puzzle, because
left-handed and right-handed particles
acted differently

• In the standard model, the left- and right-handed
fields are distinct, no connection

• But the Higgs field “marries” them, allowing them to be massive

Neutrino Driven Baryogenesis

right-handedleft-handed

Masses in the Standard Model

Higgs

 field



• In the standard model, there are only left-handed neutrinos
• And of course, their anti-neutrinos, which are right handed
• Because there is nothing for them to “marry” they would remain massless
• But there is now convincing evidence that neutrinos have masses

• Easiest way to modify the theory:
• Add right-handed neutrinos

• Predicted by many GUTs
• These right-handed neutrinos

would actually not have strong,
weak or electromagnetic couplings

• The Higgs field then marries the
particles in the usual way

• Leading to masses called Dirac
masses, which we denote m

• It is then puzzling why the neutrinos are so ridiculously light

Dirac Neutrino Masses
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• There is a way to naturally get light neutrino masses

• Recall that the right-handed neutrinos have no strong, weak, electromagnetic couplings
• Even without the Higgs field, they can join together to make massive particles

• This is called a Majorana mass, which we will denote by M
• Because it doesn’t proceed via the Higgs mechanism, the masses can be much larger

• When the Higgs mechanism cuts in,
it tries to create marriages as before

• But because the right-handed neutrinos
resist, it isn’t very effective

• The right-handed fields
end up having a mass

• The left-handed fields
end up having a mass 

• Note as M increases, mν decreases
• The see-saw mechanism

Majorana Masses and the See-Saw Mechanism
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• We have neutrinos ν1, ν2, and ν3 that are almost exactly like standard model neutrinos
• But they have mass

• We have neutrinos N1, N2, and N3 that are very massive and don’t have intrinsic strong, 
electromagnetic, or weak interactions

• But due to Higgs mechanism, they are slightly mixed with the regular neutrinos

• For this reason, they can decay, but it will be very slow, at least for the lightest N
• Since slow, they can be out of equilibrium

• These decays can be either to left-handed particles (that act like neutrinos) or right-handed (that act 
like anti-neutrinos)

• Typical decays would be

• If there is CP violation in neutrino sector, no reason these rates should be equal

• CP violation is allowed and likely to exist in the neutrino sector

Right-Handed Neutrinos and Neutrino Decay

1 1orN Nννν ννν→ →



• Recall: we need three conditions for baryogenesis
• CP violation:  Almost certainly present in neutrino interactions
• Out of equilibrium: Likely exists due to slow N1 decay
• Baryon number violation: We are missing this!

• So far, we have explained why we could have
an imbalance of neutrinos vs. anti-neutrinos

• Assume anti-neutrinos dominate
• Recall, we still have sphalerons
• Sphalerons can convert anti-quarks to quarks

and destroy anti-neutrinos in the process
• And they can do the reverse

• But since there is an excess of anti-neutrinos, it is easier
to go the direction that makes quarks

• Excess anti-neutrinos would lead to excess of quarks

Neutrinos and Baryogenesis

1 1orN Nννν ννν→ →
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• If neutrino baryogenesis is right, then there should exist heavy right-handed neutrinos N

• The fact that the neutrinos are light suggests the N’s are probably really heavy

• We probably can’t make them in the laboratory

• There should also be an excess of “anti-neutrinos” in the background neutrinos
• We can’t even detect these neutrinos yet
• Good luck seeing a 1 ppb excess

• For this to work, must have CP violation in the neutrino sector

• We are already testing this, and should know soon
• Already demonstrated with 95% confidence in 2017
• Should be virtually certain soon

• Note: Just because we see CP violation in neutrinos doesn’t mean this is the correct explanation

Neutrino Baryogenesis: How To Test It



• We have strong evidence that the universe contains more matter than anti-matter
• Although it is possible that it was just primordial, it is more probable that it was created at some 

point

• We have three plausible mechanisms for making it:
• GUT scale violation of baryon number
• Weak scale sphaleron baryogenesis combined with a source of greater CP-violation

• Such as supersymmetry
• Heavy right-handed neutrinos creating an excess of anti-neutrinos

• Converted to baryons via sphalerons

• My opinion: Neutrino generated baryogenesis is the most probable
• We already see neutrino masses
• See-saw mechanism very likely explanation of small neutrino masses
• CP violation very likely

Baryogenesis - Summary
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