Galaxy Classification General Categories Some Cautionary Notes

- Galaxies are <u>not</u> alike
 - For every general rule I give, one can find exceptions
- Classifying galaxies is difficult
 - They look different in different wavelengths
 - If the galaxy is moving, you have to correct for red-shift
 - Even experts often disagree on the classification
- There are different systems for classifying galaxies
- The original one, developed by Hubble, is the basis for most other systems
- I will use the Hubble De Vaucouleurs system
 - An expansion on the original Hubble system

The Categories

Galaxies are classified by their appearance

- Unbarrred Spiral
 - Central roundish bulge plus disk
- Barred Spiral
 - Central elongated bulge plus disk
- Elliptical
 - Roundish or elongated bulge, no disk
- Irregular
 - No discernible shape
- Dwarf Spheroidal
 - Small, dim, and round

Unbarred Spiral Galaxies General Description

- Denoted SA
- Pinwheel-like
 - Central bulge, spiral arms
 - Spiral arms, etc., signs of rotation
- Bulge is round
- Young and old stars, gas, dust
- 80% of large galaxies are Spirals (Barred or Unbarred)
- Sub-classified by amount of arms, and how tight or loose they are
 - SA0 no distinguishable spiral arms
 - SAa, SAb, SAc, SAd more spiral arms, and looser
 - SAm no bulge, typically one distorted spiral arm

SA₀

• Also called lenticular galaxies

SAa

- Central Bulge
- Disk
- Tight spiral arms

SAb

- Central Bulge
- Disk
- Spiral arms

SAc

- Central Bulge
- Disk
- Loose spiral arms

SAd

- Central Bulge
- Disk
- Very Loose Spiral arms
- Often, spiral arms are disconnected or broken

SAm

- Classified by Hubble as irregular galaxies
- They have just a bulge and typically one spiral arm
- Probably a spiral galaxy disturbed by collision with a larger galaxy

Spiral Galaxy Structure

Overall, very similar to Milky Way

- Disk contains
 - Gas
 - Dust
 - Young and old stars
 - Open clusters
- Stars in the disk orbit in approximately circular orbits
- The bulge contains older stars
- Orbits much more random
- The halo contains oldest stars and globular clusters
- Orbits completely random
- Most (all?) galaxies seem to have black holes in their centers

Dark Matter in Spiral Galaxies

- Spirals Rotate
- Rotation measured by Doppler shift
- Mass, again, not concentrated in the center
- 85% of mass is dark matter

• Flat rotation curves → dark matter

Barred Spiral Galaxies

General Description

- Denoted SB
- It is now believed that most spiral galaxies have at least some bar
- Pinwheel-like
 - Central bulge, spiral arms
 - Spiral arms, etc., signs of rotation
- Bulge is straight barred
- Young and old stars, gas, dust
- 80% of large galaxies are spirals or barred spirals
- Sub-classified by amount of arms, and how tight or loose they are
 - SB0 no distinguishable spiral arms
 - SBa, SBb, SBc, SBd more spiral arms, and looser
 - SBm no bulge, typically one distorted spiral arm

SB0

- Also called lenticular galaxy
- Central Bulge
- Disk
- No Spiral arms

SBa

- Central barred bulge
- Disk
- Tight spiral arms

SBb

- Central Bar
- Disk
- Spiral arms
- This is approximately galaxy type of the Milky Way

SBc

- Central Bar
- Disk
- Looser spiral arms

SBd

- Central Bar
- Disk
- Very loose spiral arms
- Often the arms are partially disconnected

SBm

- Classified by Hubble as irregular galaxies
- They have just a bulge and typically one spiral arm
 - Coming off of a bar-shaped central region
- Probably a barred spiral galaxy disturbed by collision with a larger galaxy

Intermediates

- The amount of barring and the amount of spiral arms are continuous variables
- As we have gotten better at classifying, it becomes useful to have categories between these
- Between the spirals (SA) and the barred spirals (SB) are the intermediate spirals
 - Denoted SAB
- Between each of the categories a through d, there are intermediate
 - Denoted by using both letters, like bc
- For example, a SABcd galaxy would have
 - Some barring, but not as much as an SB galaxy
 - Looser arms than an SABc, but tighter than SABd

Barred Versus Unbarred Spirals

- It is not obvious what causes bars to form
- Numerical simulations indicate that over time, instability causes bars to form
- *Probably* bars are a sign that a galaxy has "matured"
- Over time, most (all?) unbarred spiral galaxies become barred spirals
- Process takes a couple Gyr
 - Age of universe < 14 Gyr
- Over long times, bars may also become unstable
 - May cause barred galaxies to return to unbarred (?)

Elliptical Galaxies

Categorization

- Look like a sphere or a flattened sphere
- Little gas and dust
- Mostly old stars
- Classified by how round they look
 - E0 looks circular
 - E7 is very elongated
- There is a relatively objective way to classify them
 - Measure their long and short axes
 - Formula for the number is

$$e = 10\left(1 - \frac{b}{a}\right)$$

- Elliptical galaxies have the largest range of masses
 - Dwarf ellipticals are the smallest
 - Add the letter d in front, so it might be a dE2 galaxy
 - Giant ellipticals are the largest

Elliptical Galaxy Shapes

- Appearance may depend on angle of view
- Amount of flattening probably has to do with rotation
- Beyond E7, galaxy probably becomes unstable

Elliptical Galaxy Structure

Rather different from the Milky Way

- Typically contains only old stars
- Star orbits can be
 - Completely random, or
 - Have a bias so there is net angular momentum of the galaxy
- Probably, the more rotation there is, the more flattened the shape is
- No gas and dust, so no new stars
- Halo often contains low-density hot gas

Elliptical Halos

- Elliptical galaxies don't have thick clouds, but they do have diffuse, hot gas
- These gasses emit X-rays
- Gravity vs. pressure they expand to make a giant sphere
- Amount of gravity tells us 85% of the mass of the galaxy is dark matter in the halo

Dwarf Ellipticals

- Some elliptical galaxies are much smaller than typical galaxies
 - Denoted dE, for dwarf ellipticals
 - There are typically no spiral galaxies of this size
- These galaxies probably originally had gas, but all gas has since been consumed
- These may have been the first galaxies ever formed
 - Other galaxies formed primarily from mergers of dwarf ellipticals

Giant Ellipticals

- The largest galaxies tend to be elliptical galaxies
 - Still denoted by E
 - There are typically no spiral galaxies this large
- They tend to be more round
- They galaxies often have low densities of stars
 - They are therefore "low surface brightness galaxies"
 - Denoted D in the Yerkes classification system
- The largest of these are called cD or Central Dominant galaxies
- Usually at the center of a cluster of galaxies
- Often contain multiple nuclei
 - Multiple giant black holes
- Probably formed from the merger of many smaller galaxies

Other Types of Galaxies Irregular Galaxies

Irregular galaxies don't fit in well with the others

- *Some* of them look a little like spiral galaxies
- Gas, dust, young and old stars
- Like a galactic disk, no spirals, a mess
- Probably caused by disruptive collisions
- Classified as Im

Dwarf Spheroidal Galaxies

- Much lower mass than typical galaxies
- Stars are spread out low density
- Mass of stars insufficient to hold them together
- Strong indication they are <u>mostly</u> dark matter, not much else
- Difficult to see beyond nearby galaxies
- Denoted dSph

Putting it All Together

The Original Tuning Fork

- Original Hubble classification had a two-pronged system that described how these go together
 - Because he didn't have intermediate bars (SAB)
- With the De Vaucouleurs system, it is now a three pronged fork
- And the "tines" have gotten longer

The Updated Tuning Fork

HUBBLE-DE VAUCOULEURS DIAGRAM

Differences - Spirals vs. Ellipticals

- Spirals have disks and spiral structure
- Spirals have dust/gas/young stars in the disk
- Ellipticals have hot gas spread out through a large halo

Can we explain these differences?

Hot Gas Vs. Cool Gas

- Hot gas has low density
 - Atoms cool off by colliding and radiating light
 - But at low density, collisions are rare
 - Low density gas cools slowly
 - Will not cool off in age of universe
- Hot gas has pressure:
 - Gravity vs. pressure = sphere
 - An elliptical galaxy
- Cool gas has high density
 - High density gas collides more often
 - And then can radiated that energy
 - Can cool off further in short time
- Cool gas has little pressure, but still has rotation
 - Gravity vs. rotation = disk
 - A spiral (or barred spiral) galaxy

What Determines Galaxy Type?

- If we have a source of cool gas:
 - Gas will form a disk
 - Disk will form stars
 - There will be young stars
- If all gas is hot:
 - Gas remains in a giant halo, no disk
 - No star formation
 - No young stars
- Conclusion: If you have a source of cool gas, you get a spiral or barred spiral, otherwise get elliptical