
• Our best fit for all our parameters:
• What is all that dark matter?
• If it is standard model particles, it must be stable
• Only stable particles are:

• Protons and neutrons (and their anti-particles)
• Electrons (and their anti-particles)
• Photons
• All three neutrinos

• Photons are easy to detect – we can see them
• Because universe is charge neutral, every electron is associated with a proton

• Which makes their mass irrelevant
• We therefore narrow it down to baryons or neutrinos

Standard Model Particles and Hot Dark Matter
Could It Be Standard Model Particles?

What is the Dark Matter?
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Could the Dark Matter Be Baryons?
Arguments against dark matter being baryons:

• Counting baryons indicate that the estimate for identified baryons is, 
if anything, smaller than what we need

• The numbers at right are based mostly on studying the CMBR

• The CMBR was generated at recombination

• You can’t stuff baryons in white dwarfs, etc., made later

• Also, we can get an estimate by studying primordial nucleosynthesis

• And this yields the same baryon density

• Bottom line: It’s very difficult to imagine it’s all baryons
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What Do We Know About Neutrinos?
• We have clear evidence that there are three neutrinos

• Predicted by theory
• Indirectly measured by primordial nucleosynthesis
• Directly measured by studying decay of Z-boson

• Direct measurements for neutrinos masses give only negative results

• We can best measure the neutrino corresponding to the electron

• Indirect observations can only measure
some differences between neutrino masses

• The smallest the masses could be:

• The largest the masses could be:

• Sum of masses
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So Could It Be Neutrinos?

• The number density of neutrinos was computed previously

• In a homework, we then calculated the contribution to Ω

• To get it to be all of the dark matter, we would need neutrinos of mass 3.7 eV each

• This makes it clear that neutrinos are apparently not all of the dark matter

• But it could still be much of the dark matter

• We also have to be nervous that the neutrinos might work
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Hot and Cold Dark Matter
• Two generic categories of dark matter:

• Cold dark matter is anything that froze out when it was non-relativistic
• Hot dark matter is anything that froze out when it was relativistic

• Neutrinos are the classic example of hot dark matter

• Typically, hot dark matter will have a number density comparable to the density of photons

• They will become non-relativistic right at the time of matter-radiation equality

• No matter what they are, we will need a mass ~ few eV, depending on several details

• For definiteness, we will work out what happens if we have three neutrinos with mass 3.7 eV each



So What’s Wrong With Hot Dark Matter? (1)
The list is long
• We will focus on one aspect: structure formation

• Consider the momentum of neutrinos of mass 3.7 eV/c2

• At freeze out, their energy is roughly 3kBTν, and momentum is p = E/c = 3kBTν /c

• At the time of matter-radiation
equality, this formula still works

• These are now non-relativistic,
so their velocity will be

• They will therefore move a distance
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• Suppose at this time, there were a region
 smaller than this that had high density

• Neutrinos would simply run from high 
density region to low density

• Any scales smaller than this are wiped out

• Matter-radiation equality came at roughly z = 3400

• So fluctuations on this scale would have grown by a factor of 3401, and now would be of size 

• This is size of the Laniekea Supercluster

• Suggests superclusters formed before clusters, galaxies, or globular clusters

• But observations suggest smaller objects were probably first

So What’s Wrong With Hot Dark Matter? (2)
7.7 kpcd =

( )3401 7.7 kpc= 26 Mpc=



• If mass sum is 11 eV/c2, all dark matter would be neutrinos
• But it doesn’t lead to a universe that looks like ours

• If mass sum is 3.3 eV/c2, a significant fraction of dark matter would be neutrinos

• How low can we make the neutrino masses and lead to a universe that looks like ours?
• Assume a specific neutrino mass sum
• Predict large scale structure and small angular CMBR variations
• Match to experiment
• We find

• This gives us limits on Ων

• Normally assumed to be near the lower end of this limit

Learning About Neutrinos from Cosmology
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• We have ruled out hot dark matter
• Matter which fell out of equilibrium before it became non-relativistic

• Now consider cold dark matter
• Matter which was non-relativistic when it fell out of equilibrium

• It must be stable (or very long-lived) particles that are not in the standard model
• Call the particle X and its mass mX
• Like all particles, it must have an anti-particle X-bar

• Though the anti-particle could be the same particle 
• Generally, when particles combine with anti-particles, they can annihilate:

• So why didn’t they all annihilate when 3kBT drops below mX?

Cold Dark Matter

if not its own anti-particle
if it is its own anti-particle
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Annihilation of Cold Dark Matter



• There are two reasons this process could stop:

• There is an excess of X’s over anti-X’s
• This only makes sense if X’s and anti-X’s are distinct

• The X’s and anti-X’s become so low in density that they have trouble finding each other
• Makes sense in either case

• If it’s the former, we can’t really figure out how many there should be left

• If it’s the latter, then the process should stop when the average X collides only once in the age of 
the universe with its anti-particles

• We’ll assume this second case

What Stops the Annihilation Process?
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• X particles will begin disappearing as soon as kBT < mXc2/3
• At this point, any remaining X’s will be non-relativistic
• And so long as they remain in thermal equilibrium, their

density will be proportional to

• Because we need to get rid of most, but not all
of them, we need to have kBT well below mXc2/3

• We need about
• Almost independent of mass

• The average kinetic energy at this time is about
• Match this to the non-relativistic formula for kinetic energy
• And we have the velocity 

When Does the Annihilation Happen?
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• The rate at which any collision occurs is
• n is number density
• σ is cross-section
• ∆v is relative velocity

• We also know the time-temperature relationship

• Freezeout occurs when density has dropped to the point where

• Solve for nF:

• Multiply nF by mX to get the density:

Density of Dark Matter at Freezeout
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• We have the density at this time

• But the universe has continued to expand
• Roughly a ~ T–1

• So density ρ ~ T3

• So we have roughly

• Small correction because of
reheating as various particles annihilated

• Substitute the various quantities in:

• Note that the mass has cancelled out
• The only real unknown here is geff

The Current Dark Matter Density
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• If we knew the cross-section, we could
predict the current density

• But we know the current density

• Turn this around and get the current cross-section

• Exact value will depend geff
• Which depends on number of particles

at these unknown high energy

• For definiteness, let’s pick geff = 100

• This value is probably accurate to about a factor of two 

The Annihilation Cross Section
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• We have a pretty good idea of the cross-section
• And we know it isn’t any standard model particle

• Typical cross-sections depend on particle physics model, but …

• Usually such cross sections look something like:

• The factor αX is a dimensionless coupling constant

• Typical values in most theories have αX ~ 10– 2 – 1 
• Electromagnetism, for example, has α = 1/137

• There is also an approximate upper limit on the cross section

• Put this all together and you can
get a range on the mass of the X:

What is the Mass of the Dark Matter Particle?
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• Supersymmetry is supposed to have particle called the Lightest Superpartner that is both stable 
and can annihilate to ordinary particles

• It is predicted to be probably around 102 – 104 GeV

• It should be perfect for the dark matter

• But thus far, all such searches have been unsuccessful
• So probably it is somewhat above 103 GeV

• Other theories contain massive particles that have only weak interactions
• WIMPs = Weakly Interacting Massive Particles

• There are countless other candidate theories for the dark matter

So What Is the Dark Matter?
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• If it is lighter than a few TeV, we should find it soon
• LHC operates at 7 TeV + 7 TeV

• But not sure how to discover it

• We can also look for collisions of the dark
matter with ordinary nuclei
• Should happen for WIMPs
• Thus far, no detection

• It is also possible we will some day
discover annihilation products from the
remaining dark matter particles

Can We Detect the Dark Matter?
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• We discussed hot and cold dark matter

• We ruled out hot dark matter and therefore concluded it must be cold dark
• But there may be other, even better alternatives

• How well does cold dark matter work?

• So well that the standard cosmological model is called the ΛCDM model

• But not perfectly!

• Many aspects of galaxy formation are fudged – they include factors that are poorly understood

• Also, most simulations indicate that dark matter should cluster more strongly towards the center of 
galaxies

• May indicate that we have some important details wrong

Other Dark Matter Candidates
Is it Necessarily Cold Dark Matter?



• Countless alternatives have been proposed over the years
• Many of them have been tested and found wanting

• When you eliminate those, the list gets shorter

• One idea that is currently popular is warm dark matter
• Particles were slightly non-relativistic when they froze out

• An example would be sterile neutrinos with mass ~ few keV/c2 or so
• Neutrinos with little or no weak interactions

• Bottom line – we don’t really know what the dark matter is

Random Examples of Crazy Dark Matter Ideas

• Eric D. Carlson, Marie E. Machacek, and Lawrence J. Hall, “Self-Interacting Dark Matter,” 
Astrophys. J. 398, 43 (1992)

• Eric D. Carlson, Rahim Esmailzadeh, Lawrence J. Hall, and Stephen D. H. Hsu, “Black Hole 
Nucelosynthesis and ΩB = 1,” Phys. Rev. Lett. 65, 2225 (1990).

• Eric D. Carlson and L.J. Hall, “νµ and ντ as dark matter,” Phys. Rev. D40, 3187 (1989).
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