
• The force of gravity is proportional to the mass of the object it acts on
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• The acceleration is the same, no matter 

the mass you drop
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• Suppose you are in an elevator
• Now, we cut the cable

– You fall
– Other things fall at the same rate

• To you, it looks like you are weightless

Principle of Equivalance
The Odd Thing about Gravity

General Relativity



• This is why astronauts are weightless - they are always falling
– They are not far from the Earth

Weightlessness



• Are there any other force formulas that are proportional to mass?
– Suppose you are on a merry-go-round
– Centrifugal force 2 ˆmv rF

r
=


• Like gravity, everything “accelerates” equally
• You can make it go away by letting go

Can we create “gravitational” effects through acceleration?
• Put the person out in space in the elevator
• Attach to an accelerating rocket
• The effects are indistinguishable from

gravity

The effects of gravity are indistinguishable from
the effects of being in an accelerated reference frame

Principle of Equivalance



• We will start by reexamining the metric – the distance formula
– Or in this case, the proper time formula

2 2 2 2 2 2 2c c t x y zτ∆ = ∆ − ∆ − ∆ − ∆
• This formula works if you move in a straight line

• What if you don’t move in a straight line?
• You can divide any longer path into several short segments
• Then, find the distance formula for each one
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2 dx dy dzc dt c

dt dt dt
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• We won’t be using this formula

• Interestingly, you can show that the straight line has the longest proper time path – called a geodesic

An object with no forces acting on it will always follow a geodesic,
which is the longest proper time path between two points in spacetime

( ) ( ) ( ) ( )2 2 2 22c c dt dx dy dzτ = − − −∫

Reexamining the Metric



Changing Coordinates
• It is important to be able to change coordinates to a different system

• Let’s change to spherical coordinates:  (x,y,z,t)  (r,θ,φ,t)
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Moving in Curved Coordinates (1)
• The geodesic principle works in any coordinate system

An object with no forces acting on it will always follow a geodesic,
which is the longest proper time path between two points in spacetime

( ) ( ) ( ) ( )2 2 2 22 2 2 2 2 2sinc d c dt dr r d r dτ θ θ φ= − − −

• It is possible, starting from the metric, to find equations that describe geodesic motion
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• The effects of moving in curved coordinates looks like acceleration
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• But it really isn’t
– It is moving as straight as it can in curved coordinates

x

y

• You can always eliminate this apparent acceleration, 
simply by returning to “flat” coordinates

• It is possible, starting from the metric alone, to prove 
that spacetime is really just flat

Moving in Curved Coordinates (2)



Curved Space
• It is possible to live in a spacetime that is inherently curved

– It’s not just the coordinates, it’s spacetime itself that is curved

• Consider the surface of the Earth
– Think of it as a 2D object

Imagine two explorers setting out from the North Pole in “straight 
lines” (geodesics)
• At first they are traveling away from each other

• When they reach the equator, they will be traveling “parallel” to 
each other; their distance is no longer increasing

• They then start traveling towards each other

• They meet at the south pole

• The curvature is real

• It is space itself that is curved, not the coordinates only 
( ) ( )2 22 2 2 2sinds a d a dθ θ φ= +



Curvature
• How can we tell, looking only at the distance formula (the metric), if the curvature is real or a 

consequence of our coordinate choice?

• The Riemann Tensor tells
you if it is curved

R
x x

µ µ
νβµ σ µ σ µνα
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• If the Riemann tensor is zero, space is not curved; if it is non-zero, it is curved

• Changing coordinates doesn’t make it go away

Some other measures of curvature:

• The Ricci tensor:

• The Ricci scalar:

• The Einstein tensor:
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The Stress-Energy Tensor
What causes gravity? Energy and momentum

• The presence of matter, or mass density, is the cause of gravity
– Mass density is proportional to energy density

• If energy makes a difference, why not momentum as well?
– Momentum density also contributes to gravity
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• Gravitational effects in general relativity are caused by the energy 
density u, the momentum density vector g, and the stress tensor σ
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The flow of energy and momentum also causes gravity

• Another way of looking at momentum density is the transfer of energy
– It is like power flowing through an area

• You can also transmit momentum across a boundary
– This is what forces do
– Pressure is a good example 
– A more general example is called the stress tensor
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Einstein’s Equations
The central idea of Einstein:

• Gravity looks just like acceleration, except
– When you have a source of gravity,

parallel doesn’t remain parallel

• This tells you gravity has to do with curvature

M a

• The stress-energy tensor Tµν
 must be related to the curvature

• Einstein found a relationship that worked, now called Einstein’s equations
4

8 GG T
cαβ αβ
π

=

• It may look simple, but it isn’t
– This is really 16 equations (since α and β each take on 4 values)
– The expression on the left contains hundreds of terms
– It is highly non-linear
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Geodesics in Curved Spacetime
• Why do particles curve under the influence of gravity?

– Because spacetime itself is curved!
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An object with no non-gravitational forces acting on it will always follow a 
geodesic, which is the longest proper time path between two points in spacetime
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Matter tells space how to curve, and
space tells matter how to move



• The universe is, apparently, homogenous and isotropic
– The same everywhere and in all directions

• This is sufficient to almost specify the shape of space right now

• What possible shape of space are uniform and isotropic?

• One obvious one is flat space,
which has distance formula

• Most useful to rewrite this in
spherical coordinates

• With some work (PHY 215),
the local distance formula is then

Homogenous and Isotropic Geometries
Flat Geometry in Spherical Coordinates

2 2 2 2ds dx dy dz= + +

sin cos , sin sin , cosx r y r z rθ φ θ φ θ= = =

2 2 2 2 2 2 2sinds dr r d r dθ θ φ= + +



• There are other geometries that are homogenous and isotropic
• For example, the set of points a distance a from the origin in 3D is called a 2-sphere

• Every point on the sphere is equivalent to every other point
• These points satisfy
• All such points can be

described by giving just two angles

• The distance can then be worked out using the 3D flat metric

• But we want a space with three internal dimensions

The 2-Sphere
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• Consider the set of points in four dimensions a distance a from the origin

• These points can form a three-dimensional space –
the 3-sphere – which can be descried in terms of three angles

• If you work out the distance between nearby points, it works out to 

• Just like flat space, this three-dimensional space is isotropic and homogenous

The 3-Sphere
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2 2 2 2 2ds dx dy dz dw= + + + ( )2 2 2 2 2 2sin sina d d dψ ψ θ θ φ = = + + 



• So far we have two possible
geometries that work:

• There is one parameter describing the
second one, the radius a or scale factor
of the universe
– In contrast, flat space has no “scale” to it

• The first is said to have zero curvature, the second has positive curvature

• There is one more type of solution,
with negative curvature:

• This one also has a scale factor a which is meaningful

• The 2d equivalent of this is saddle shaped

Isotropic and Homogenous Geometries
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• Here are all our possible geometries:

• To make them all look as similar as
possible, we can make the following
substitutions in cases 2 and 3:

• Then we have

• And our metric becomes, in these two cases:

• In fact, if you simply set a = 1 for the first case,
you can make all three formulas nearly identical:

• We have k = 0 for the first case, k = +1 for the second and k = –1 for the third. 
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• This is what the universe looks like at any moment of time

• From isotropy and homogeneity we know the only thing that can happen over time is that the 
distances between objects can increase or decrease uniformly

• Therefore, the only thing that
is different at different times is
to change a to a function of time

• We also should include time itself in the formula
• By homogeneity, time runs at the same rate everywhere
• At some point (say here), this would add a –c2dt2 to the distance formula

• Therefore, the
distance formula is

It’s Time to Include Time
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• We can also go back to writing this equation in terms of ψ

• General Relativity works in any choice of coordinates
– Pick whichever is easiest for computations

Two Equivalent Ways of Writing the Metric
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• This is the only possible universe that is isotropic and homogenous at all times

• Any particular object “at rest” in this universe will stay at constant r, θ, and φ

• The behavior of the scale factor a(t) will depend on gravity

• Einstein’s equations relate the curvature Gαβ to the presence
of that which causes gravity, the Stress-Energy Tensor Tαβ: 

• We need to find Tαβ

The Friedman-Robertson-Walker Metric
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• Use the fact that the universe is homogenous
– So it can’t depend on location

• And it’s isotropic
– So it can’t prefer any particular direction

• The component u is just the energy density
• Since there is no net motion, this is just 

– Where ρ is the mass density

• The components gx, gy, gz represents momentum in the x-, y-, and z-direction
– Clearly this must vanish

• Terms like σxy represents force in the y-direction transported in the x-direction
– Terms like this must also vanish

• Terms like σxx represents pressure in the x-direction 
– These won’t vanish, but must be the same in all directions

• This is just the pressure

Matter and Energy in the Universe
The Stress-Energy Tensor
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• We now need to use Einstein’s equations

• Getting the Einstein tensor is a lot of work
– Fortunately, I have programs that do the work for me

• I will use only the time-time component
• Substitute this in

• Now rearrange slightly

• This is the Friedman Equation
we found before

Friedman’s Equation
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• Recall again that
• We also defined

the density parameter
• So that we have

• If we know the sign of Ω – 1, we
also know the sign of k

• And since k = 0, +1, or –1, we know k  

Ω and The Shape of the Universe
2 2

2 2
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Dens. Curv. Name
Ω < 1 k = -1 Open
Ω = 1 k = 0 Flat
Ω > 1 k = +1 Closed
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