
Plot distance vs. velocity.  We find:
• Velocity proportional to distance

• H0 is called Hubble’s constant
• Best fit today (includes many assumptions)

0v H d=

0 67.7 0.4 km/s/MpcH = ±
Uncertainties:
• Until recently, we didn’t know H0 very well,

so we would write
• h = 0.677 ± 0.004
• I’ll probably avoid h.

• Many published documents write answers in terms of h 
so that we remove the uncertainty in H0

0 100  km/s/MpcH h=

Hubble’s Law
Hubble’s Constant

Hubble’s Law and Expansion of Universe



• In the mid 1900’s, Hubble’s constant was > 200 km/s/Mpc
• Relied crucially on Cepheid Variable stars

• When it was realized that there were stars of different metallicity, and that the period-luminosity 
relationship was affected, H0 suddenly decreased by factor of 2

• In the 1980’s, there were two sets of techniques that measured Hubble’s constant
• One group gave values around 100 km/s/Mpc
• The other group gave values around 50 km/s/Mpc

• Around 1990, it was realized that white dwarf supernovae were a great way to measure distances
• We realized the value was around 70 km/s/Mpc
• And we all lived happily ever after, until

• In the 2010’s, various techniques yielded much more precise values
• Methods using the cosmic distance ladder give 72±1 km/s/Mpc
• Methods using fit to cosmological models give 68±1 km/s/Mpc

• This discrepancy is currently unresolved
• We will use the value 

Past and Future History of Hubble’s Constant

0 67.7 0.4 km/s/MpcH = ±



• You can measure spectrum of almost any bright object
• Don’t have to wait for a supernova, or similar rare event!

• You can then use Doppler shift to get the velocity

• Then you use Hubble’s Law to get the distance
• Some caveats will be in order shortly

• Because this system is so robust, it is used to
map out large portions of the universe

• Because velocity is proportional to z,
which is directly measured, we can plot z and it
will be proportional to distance

• For this reason, most such maps simply plot
z instead of distance
• This also bypasses any uncertainties in H0

What’s So Great About Hubble’s Law?
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Sample Problem
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A spectral line from a galaxy normally at 415.00 nm appears instead at 423.00 nm. 
(a) How fast is the galaxy moving away from us?
(b) What is the distance to the galaxy?
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Hubble’s Law isn’t perfect.  In particular, for low z:

• Not everything expands
• Galaxies, galaxy clusters, and smaller objects are not necessarily expanding
• Galaxy superclusters expand more slowly than Hubble’s Law implies

• Objects have extra velocities, called peculiar velocities
• Because gravity changes velocities
• Typically of order 500 km/s or so

• This causes errors, usually random, of magnitude vp /H0 in the distance
• Typically 7 Mpc or so
• Poor distance indicator for distances under 50 Mpc or so.

• We also have our own peculiar velocity that needs to be compensated for
• We know how to do this

Failure of Hubble’s Law at Small z



Failure of Hubble’s Law at Large z
Hubble’s Law isn’t perfect.  In particular for high z:

• As z gets large (> 0.2) objects are moving relativistically
• Relativistic corrections
• Distance gets confusing as well

• We are also looking back into the past
• Bad:  Expansion might not be constant
• Good:  We can study the universe in the past (!)

• Still, higher z corresponds to greater distance
• If we can accurately measure distance to some high z objects, we can set up a calibration 

scale

• Bottom Line: Once a calibration is set up at high z, you can use modified Hubble’s Law if you are 
careful



The Cosmic Distance Ladder:
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End of Material for Midterm Test

Midterm Exam:
Wednesday October 13

2:00 – 4:00
Location TBA

Material for Exam:
• Pen/Pencil
• Paper
• Calulator
• 30 cm metric ruler

List of equations for 
Midterm is on the Web



Hubble Expansion
Homogeneity and Isotropy

• On small scales, the universe is not at all 
uniform
• Galaxies, Clusters, and Superclusters

• But on the largest scales, it seems to be 
roughly homogeneous
• The same at all places

• It also looks isotropic
• The same in all directions

• Many properties of the Universe can be 
worked out just from homogeneity and 
isotropy



• For now, neglect relativity

• Assume the universe is homogenous and isotropic

• Suppose we see galaxy X at distance d moving away from us at speed v

• By isotropy, a galaxy Y on the other side of us at distance d must also be moving away at speed v
• But as viewed by galaxy X, galaxy Y is now moving away at speed 2v and is at a distance 2d

• If the universe is homogenous, then galaxy Z, at distance 2d from us must also be moving at speed 2v

• Therefore, if distances are expanding (or contracting), the speed must be proportional to distance – 
Hubble’s Law is inevitable

Hubble’s Law is Not Arbitrary
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Hubble’s Law can be thought of two ways:

• All galaxies are flying apart from each other

• The space between the
galaxies is expanding

There is no special place in 
the universe
• It is meaningless to ask 

“where is it expanding 
from”

• All observers see the 
same thing

Two Ways of Thinking About Hubble 
Expansion



Age of the Universe: A Naïve Computation:
• Hubble’s Law tells us relation between distance and velocity

• We can therefore figure out how long ago all this stuff was here:
• Call t0 the time when everything left here:

0v H d=

0d vt= 0 0H dt= 0 0 1H t = 1
0 0t H −=

• This time is called the inverse Hubble time:

• Compare to oldest stars 13 ± 1 Gyr

• This is incorrect because the velocity of other galaxies is probably not constant

14.44 0.09 Gyr= ±

Assuming gravity slows things down, should the actual age of 
the universe be grater than the inverse Hubble time, or less?

• Speeds are slowing down

• Speeds used to be greater

• Higher speed  Less time to get to where we are now

0 67.7 0.4 km/s/MpcH = ±



The Friedman Equation (1)
• Assume the universe is homogenous and isotropic

• We can treat any point (us), as center of the universe
• We can use spherical symmetry around us

• Let a be the distance to any specific distant galaxy
• And let its mass be m

• By Gauss’s Law, gravitational force is easy to find
• Spherical symmetry tells us force is towards center
• And caused by only mass closer than that galaxy

• Because expansion of the universe is uniform, stuff closer than 
galaxy always closer
• M is constant

• Multiply both sides by 2da/dt and integrate over time

Don’t forget the constant of integration!
• We could call it k, for example
• For technical/historical reasons, it is called – kc2

• This makes k dimensionless
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The Friedmann Equation (2)

us distant 
galaxy

a
• Mathematical notation: Time derivatives

M
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• Divide both sides by a2

• Rewrite first term on right in 
terms of mass density ρ
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• The derivation was flawed
• M does not necessarily remain constant
• In relativity, other contributions to gravity

• The equation is correct, including relativity

• The left side is the square of Hubble’s constant
• Left side and first term on right independent of which galaxy you use
• We can pick a particular galaxy to make k bigger or smaller

• Normally chosen so that k = 0, +1, or -1
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Ω
• We’d like to know what the value of k is

• Define the ratio:

• If we know how big Ω is, we’ll know k

• It is common to break Ω into pieces
• Ordinary atoms and stuff: Ωb
• Dark Matter: Ωd
• Matter: Ωm = Ωd + Ωb
• Radiation: Ωr
• Etc.

• Ω changes with time

• When referring to values today, we add the subscript 0
• Sometimes
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Ω ≡ Dens. Curv. Name
Ω < 1 k = –1 Open
Ω = 1 k = 0 Flat
Ω > 1 k = +1 Closed
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So, What is Ω?
Stuff  Cont. to Ω
Stars  0.013
Gas, Dust 0.036
Neutrinos 0.0014 – 0.14 (probably near low end)
Dark Matter 0.258 ± 0.011
Light  ~ 10-4

Total  ~ 0.308

Ωb = 0.0486 ± 0.0010

As we will see, we have missed a substantial fraction of Ω



Age of the Universe, Round 2 (1)
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• Substitute in:

• Let x = a/a0

• For age of universe, let x run from 0 to 1

• Integrate to get the age of the universe:
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• If Ω0 = 0.308, then
• t0 = 11.6 ± 0.16 Gyr

• Theorists like Ω0 = 1
• If Ω0 = 1.000, then

• t0 = 9.61 ± 0.13 Gyr

• The oldest stars are 13 ± 1 Gyr old

The Age Problem

Age of the Universe, Round 2 (2)



• The distance a is called the scale factor
• All distances increase with the same ratio
• This applies to anything that is not bound together

• Even to waves of light!
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Red shift can be thought of as a stretching of universe
• Or is it Doppler shift?

• Either view is correct; there isn’t a right answer
• This view does give us another relationship:
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• Most common way to label something in the distant past: z
• Bigger z means earlier

The Scale Factor



Annoying Notational Problems

• The scale factor, describing the size of the universe, goes by different names
• Many older sources call it R(t)
• More commonly, it is now called a(t)

• I like to stick with the book.  So what does Ryder call it?
– Her convention: a(t0) ≡ 1, and R0 is how big it is now

• I refuse to use this messed up notation

• Therefore, we are going to use the convention I’m most used to 

( )0scale factor R a t=

( )scale factor a t=



• What’s the circumference of a circle of radius r?
• According to Einstein, Space time can be curved!

• Shape of space depends on density parameter: Ω

• If Ω = 1 then universe is flat and

• If Ω > 1 then universe is closed and

• If Ω < 1 then universe is open and
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• Surface area of a sphere:
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• A closed universe is finite

Ω and the Shape of the Universe
Dens. Curv. Name
Ω < 1 k = -1 Open
Ω = 1 k = 0 Flat
Ω > 1 k = +1 Closed
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