Physics 310/610

Extragalactic Astronomy and Cosmology

Introduction

Am I in the Right Place?

Eric Carlson
"Eric"
"Professor Carlson"
Olin 306

OH: Mon, – Fri 11:30–12:45 or by appointment

Office: 336-758-4994 Cell: 336-407-6528

ecarlson@wfu.edu

Topics Covered:

- Galaxies
- The Universe

Everyone Pick Up:

- Syllabus
- 2 homework passes

Who are you?

https://forms.gle/ozpuEpgHCrX39ovR7

http://users.wfu.edu/ecarlson/cosmo2

Dr. Carlson's Schedule

- Come to any office hours
- Any free time can also be arranged by email, text, or phone call

Materials

- Texts:
 - "Galaxies in the Universe," 2nd edition by Sparks and Gallagher, available online for free from the library
 - Introduction to Cosmology, 2nd edition, by Ryden
- Scientific Calculator
- Metric Ruler
- *Maple* or similar program
- Laptop

https://ebookcentral.proquest.com/lib/wfu/reader.action?docID=307061

The Web

http://users.wfu.edu/ecarlson/cosmo2

Numerous materials can be found on web for this course:

- Link to the textbook
- Reading assignments
- Homework assignments
 - And solutions
- Handouts:
 - Units
 - Syllabus
 - Math Review
- Lecture slides
- Recorded lectures

Class Attendance and Seating

- Attendance is expected every day
- More than two unexcused absences count against your grade
- If you have an advance excuse, contact me (email)
- If you are ill, call/e-mail me OR bring Doctor's note

Class Participation

Class participation is 10% of your grade

- Ask lots of questions
- Answer my questions
- You will be called on

Homework

- About 1-3 problems per homework set
- Due on Wednesdays and Fridays
- Getting help is encouraged
 - Ask a friend
 - Ask me
 - Don't copy this is an honors code violation
- Clarity counts

- Keep track of units
- Pay some attention to significant figures!
- Twice per semester, you may <u>delay</u> turning in your homework by one class day by using a homework pass

Homework:

Homework A by Friday

Sample Problem 0.1

The gravitational acceleration on the surface of the Earth is $g = 9.80 \text{ m/s}^2$. What is this in c/y?

$$g = 9.80 \text{ m/s}^2 \cdot \frac{c}{2.998 \times 10^8 \text{ m/s}} \cdot \frac{3.156 \times 10^7 \text{ s}}{\text{y}} = 1.031 \text{ c/y}$$

Exams

- Midterm and a final
 - Midterm, possibly evening of October 9, 7-9 pm
 - Final Wednesday Dec. 10, 2-5 pm
- Honors code violations will be turned in to the honor council
 - Normally, penalty is 1-term suspension and an irreplaceable F in the course
- Combination of computation and essay questions

Dotted Red Line – Easily derived from other formulas

Other colors – not on test

Solid Red Line – Memorize this formula

Dashed Red Line – Know how to use it

Grades

Percentage Breakdown:
Homework 40%
Class Part. 10%
Midterm 20%
Final 30%

- Little if any curving
- Do not allow extra credit

Grade Assigned	
94% A	73% C
90% A-	70% C-
87% B+	67% D+
83% B	63% D
80% B-	60% D-
77% C+	<60% F

Pandemic Plans

• If there is a catastrophic closing of the university, we will attempt to continue the class

http://users.wfu.edu/ecarlson/cosmo2 ecarlson@wfu.edu Cell: 336-407-6528

• Probably via **Zoom Link**

Units

Astronomy involves such large and small quantities that SI units are often inconvenient

Angles:

- A circle contains 2π rad or 360 degrees
- An *arc-minute* (') is 1/60 of a degree
- An *arc-second* (") is 1/60 of an arc-minute
- A milli-arc-second (mas) is 10⁻³ arc-second

$2\pi \text{ rad} = 360^{\circ}$ $1' = \frac{1}{60}^{\circ}$ $1'' = \frac{1}{60}'$ $1 \text{ mas} = \frac{1}{1000}''$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

Distance:

- The Angstrom is sometimes used for wavelength
- The Astronomical Unit or AU is the (path averaged) distance between the Sun and the Earth
- The *light-year* (ly) is the distance that light goes in a year
 - Rarely used by real astronomers
- The *parsec* (pc) is defined in terms of the AU

$$\begin{array}{ccc}
1 & AU = 1.496 \times 10^{11} \text{ m} \\
1 & pc = \frac{1 \text{ rad}}{1''} & AU
\end{array}$$

$$1 \text{ pc} = 3.086 \times 10^{16} \text{ m} = 3.262 \text{ ly}$$

More Units

Energy:

Electron volts (eV) and metric multiples used for individual particles

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$keV = 10^{3} eV$$

$$MeV = 10^{6} eV$$

$$GeV = 10^{9} eV$$

Time:

- Days and Years are commonly used
- And metric multiples of years

$$1 d = 86,400 s$$

 $1 y = 3.156 \times 10^7 s$

$$ky = 10^3 y$$

 $My = 10^6 y$
 $Gy = 10^9 y$

Temperature:

- Normally in Kelvin (K)
 - Room temperature is 300 K
- For high temperatures, we will often give k_BT , where k_R is Boltzmann's constant.
 - Typical thermal energy is about 1-3 k_BT .

Stars and galaxies often compared to the Sun

$$k_B = 1.381 \times 10^{-23} \text{ J/K} = 8.671 \times 10^{-5} \text{ eV/K}$$

$$R_{\odot} = 6.957 \times 10^8 \text{ m}$$

$$R_{\odot} = 6.957 \times 10^{8} \text{ m}$$
 $M_{\odot} = 1.988 \times 10^{30} \text{ kg}$
 $L_{\odot} = 3.828 \times 10^{26} \text{ W}$
 $T_{\odot} = 5772 \text{ K}$

$$L_{\odot} = 3.828 \times 10^{26} \text{ W}$$

$$T_{\odot} = 5772 \text{ K}$$

Angular Size and Small Angles

- The actual size of an object is how big it is:
- The angular size is how big it looks:

- These are related through the distance
- Sketch a right triangle as shown
- Then we have $\sin(\frac{1}{2}\alpha) = \frac{\frac{1}{2}S}{d}$
- Using the small angle approximation, we have

So we have
$$\frac{1}{2}\alpha = \frac{\frac{1}{2}S}{d}$$

$$\sin(\theta) \approx \theta$$

$$\alpha = \frac{s}{d}$$

Physics "Review" Electromagnetic Waves

• More than 99% of what we know about the universe comes from observing electromagnetic waves

Wave Equations Summarized

Waves look like:

$$\omega = ck$$

$$\omega = ck$$

- Related by:
- Two independent solutions to these equations:

$$\mathbf{E}(x, y, z, t) = \mathbf{E}_0 \sin(kx - \omega t)$$

$$\mathbf{B}(x, y, z, t) = \mathbf{B}_0 \sin(kx - \omega t)$$

$$E_{y0} = cB_{z0}$$

$$E_{z0} = -cE_{v0}$$

- Note that **E**, **B**, and direction of travel are all mutually perpendicular
- The two solutions are called polarizations
- We describe polarization by telling which way E-field points

Frequency and Wavelength

• The quantity *k* is called the *wave number*

$$\mathbf{E} = \mathbf{E}_0 \sin(kx - \omega t)$$

 $\mathbf{B} = \mathbf{B}_0 \sin(kx - \omega t)$

- The wave repeats in time
- It also repeats in space

$$v = 1/T$$

$$\omega = 2\pi v$$

$$k\lambda = 2\pi$$

 $\omega = ck$

• EM waves most commonly described in terms of frequency or wavelength

$$c = \frac{\omega}{k} = 2\pi v \frac{\lambda}{2\pi}$$

$$c = \lambda v$$

Note that in *this class*, frequency is denoted by *v*, not by *f*

The Electromagnetic Spectrum

• Different types of waves are classified by their frequency (or wavelength)

Know these,

in order

λ Increasing

 $c = \lambda v$

These too

Boundaries are arbitrary and overlap

Radio Waves Visible is 380-740 nm fIncreasing Red Microwaves Vermillion Orange Infrared Saffron Yellow Visible + Chartreuse Green Ultraviolet Turquoise Blue Indigo X-rays Violet Gamma Rays

Not these

Photons and Quantum Mechanics

- Classically, a wave can have any amount of energy, from 0 to ∞
- But in quantum mechanics, it comes in packets whose energy is proportional to their frequency
- h is called Planck's constant
- Can also be written in terms of \hbar , the reduced Planck constant, and the angular frequency

$$\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$$

= $6.582 \times 10^{-16} \text{ eV} \cdot \text{s}$

• The individual packets of energy are called *photons*

