The Milky Way Galaxy General Information Structures in the Universe

Levels of organization:

- Stellar Systems
- Stellar Clusters
- Galaxies
- Galaxy Clusters
- Galaxy Superclusters
- The Universe

Everyone should know where they live:

- The Solar System
- (we don't live in a cluster)
- The Milky Way Galaxy
- The Local Group
- Laniakea Supercluster
- The Universe

Milky Way as We See It

Milky Way from Outside

Studying Galaxies

We cannot get outside our galaxy

- The distances are too great we cannot send a spacecraft even to the nearest stars
- The "outside" views are of other galaxies, probably similar to our own

We are inside our galaxy

- This lets us see details of our galaxy with unparalleled precision
- However, there is dust in the plane of the galaxy makes it hard to study within the plane of our galaxy
- It makes it very difficult to see the overall shape and distribution of our galaxy
- We infer other galaxies have many details similar to ours
- We infer our galaxy has an overall shape and structure similar to others

The Milky Way – Basic Structure

The Disk

Dimensions and Structure

- A large, flat disk, shaped like a pancake
 - About 30 kpc in diameter
 - About 1 kpc thick
- We are about half way out (8 kpc)
- Has prominent spiral structure

- The disk
- The bulge
- The nucleus
- The halo
 - Globular clusters

Characterizing Locations

The position of any object can be described in our galaxy using cylindrical coordinates:

- How far out they are from the center (*R*)
- How high (vertically) they are from the disk (z)
- The azimuthal angle (ϕ) of the star compared to our Sun

For example, the Sun's position is approximately:

- $R = 8.23 \pm 0.12$ kpc (out pretty far)
- $z = 10 \pm 10 \text{ pc}$
- $\phi = 0$ (by definition)

Characterizing Distributions

- The disk is (roughly) rotationally symmetric
 - Everything is independent of ϕ
- Therefore the density of any object within it will depend only on the radius R and the height z

- In general, the distribution will look something like $n(R,z) = n_0 e^{-R/h_R} e^{-|z|/h_z}$
- The scale height h_z tells us how far things stray from the disk
- The scale length h_R tells us how things fall off with distance from the center

The Disk – Composition

- Stars
 - Thin disk stars
 - Sometimes in *Open Clusters*
 - Thick disk stars
- Gas
 - Molecular Clouds
 - Hydrogen is in H₂ molecules
 - HI regions*
 - Neutral hydrogen atoms
 - HII regions
 - Hydrogen is ionized
- Dust

*When an element is followed by a roman numeral, the roman numeral is one greater than the charge

Stars in the Disk

- Stars in the disk orbit the center in roughly circular orbits
- Near the Sun, they orbit at about 200 km/s
 - Probably comparable at larger/smaller radii
- They are more concentrated near the middle
 - Scale length ~ 3 or 4 kpc
- They fall into two groups: thin disk and thick disk

Thin disk stars

- Common (90 95% of disk stars)
- 98 99% of nearby stars
- Metallicity 0.4% to 2%
- Scale height ~ 300 to 400 pc
- Masses 0.1 to $100 M_{\odot}$
- Stars are 0 to 8 Gyr in age
- Small deviations from circular orbits

Thick disk stars

- Rare (5 10% of disk stars)
- 1-2% of nearby stars
- Metallicity 0.1% to 0.4%
- Scale height ~ 1 to 1.5 kpc
- Masses from 0.1 to $1 M_{\odot}$
- Stars are 8+ Gyr in age
- Large deviations from circular orbits

Thin vs. Thick Disk Stars

Thin disk stars

- Common (90 95% of disk stars)
- 98 99% of nearby stars
- Metallicity 0.4% to 2%
- Scale height ~ 300 to 400 pc
- Masses 0.1 to $100 M_{\odot}$
- Stars are 0 to 8 Gyr in age
- Small deviations from circular orbits

Thick disk stars

- Rare (5 10% of disk stars)
- 1-2% of nearby stars
- Metallicity 0.1% to 0.4%
- Scale height ~ 1 to 1.5 kpc
- Masses from 0.1 to 1 M_{\odot}
- Stars are 8+ Gyr in age
- Large deviations from circular orbits
- How can we account for these differences?
- Stars form in a relatively small region near the center (thin disk)
- About 8 Gyr ago, something disturbed the stars in the disk at the time
 - Probably collision with another galaxy
 - Eventually they settle down and form the thick disk
- Relatively little metals in these early stars
 - Metals come from previous stars that died
- New stars made since then comprise our current thin disk

Number of Stars in the Disk

- Density of stars in the neighborhood of the Sun is about 0.1/pc³
- The total number of stars in the disk is of order 100×10^9
 - Total mass about $60 \times 10^9 M_{\odot}$
 - Total luminosity about $20 \times 10^9 L_{\odot}$
- Note that this suggests a typical star is less massive than the Sun
- Also less luminous than the Sun

Clusters of Stars in the Disk: Open Clusters

- The youngest stars are often in loose associations called *stellar clusters*
- These are recently born collections of stars that are still together
- Not surprisingly, they are in the thin disk
- Over time, stars probably wander away from the clusters where they were born
- These clusters are called *open clusters*
- Range in size from 100 to 30,000 M_{\odot}

Open Clusters

The Interstellar Medium

- Interstellar space is not quite empty
 - It contains thin gas and dust, generally mixed together
 - Total mass about $10 \times 10^9 M_{\odot}$
- The gas is concentrated with a scale height $\sim 100 \text{ pc}$
 - Compare thin disk ~ 300 pc and thick disk ~ 1000 pc
- The gas comes in a variety of temperatures
 - HII regions contain ionized hydrogen
 - Heated by bright stars, supernovae, and other violent events
 - Can be detected by their recombination radiation
 - HI regions contain atomic hydrogen
 - Not sufficiently cooled to make molecules
 - Detected mostly using the 21 cm line
 - Molecular clouds contain hydrogen molecules H₂
 - Detected using emissions from other molecules, like CO
- The dust annoyingly makes everything difficult to see
 - Especially in the disk!

HII Regions

- Interstellar gas gets heated by light from various sources
 - High mass stars
 - Supernovae
- If the density is high enough, and the temperature not too high, you can get recombination radiation from atoms getting ionized and then recombining
- Light from the star knocks an electron free
- The electron finds an unbound nucleus and settles back in
- As it goes from one level to another, it emits light
- Typical light from hydrogen will be visible or near ultraviolet
- At high temperatures, light from elements like Fe⁺²⁴ will be X-rays
- At extremely high temperatures and low densities, you can still get light from electron-electron collisions

Ionization (Emission) Nebulae (1)

Ionization (Emission) Nebulae (2)

HI Regions

- At intermediate temperatures/densities, hydrogen (and other elements) will be bound into atoms
 - But not molecules
- The nucleus and the electron both have spin
- Spinning charges produce magnetic fields
- The atom has lower energy when spins cancel
- Because of collisions between atoms, they nonetheless often end up aligned
- The atom then makes a transition when the electron spin flips over
- The release of energy is emitted in a photon with wavelength 21 cm
- Takes on the average about 10 Myr
- We can not only detect hydrogen this way, we can use Doppler shift to get the velocity

The 21 cm line

Molecular Clouds

- At low temperatures (and/or high densities), the hydrogen atoms bond together to make H_2 molecules
- Molecular hydrogen is very difficult to detect directly
- Fortunately, there are small amounts of other gasses that are easier
 - CO, HCN, OH, NH₃, H₂O, etc.
- These molecules all have *dipole moments* that make them more efficient at radiating energy.
 - More positive on one side, more negative on the other
- They produce electromagnetic waves efficiently when they vibrate
- And when they rotate

Molecular Clouds and Star Formation

- Molecular clouds are cool and dense enough that gravity can overcome pressure
- Over time, they slowly contract and form new stars
- The gas tends to be very close to the galactic plane
- Stars tend to form very close to the galactic plane

Labeled Eagle Nebula

Dust (1)

- Galaxies like ours have a lot of dust in the disk
 - For us, about 1% of the mass
- Consists mostly of carbon compounds and silicates
- Size of dust particles range from 0.01 µm to 1 µm
- These are efficient at scattering and absorbing light
 - The probability of scattering or absorbing roughly proportional to $1/\lambda$
- Short wavelengths are scattered the most
- Objects behind dust will be dimmer and redder
- Must be compensated for
- The scattered light will look blue
 - Much like the blue sky

Dust cloud

Dust (2)

- Dust is warmed by absorbing light from stars
- It glows in the infrared

Reflection Nebula: The Pleiades

 The light reflected from nearby stars causes the dust to look blue

Reflection Nebula: Merope Nebula

More Reflection Nebulae

The Milky Way – Basic Structure

The Bulge

As Viewed in Infrared

General Information About the Bulge

- Must be studied via infrared, because view blocked by gas and dust
- High metallicity stars, comparable to the Sun (1.6%), some as high as 5%
 - Probably production of metals got an earlier start or proceeded more quickly in this region
- Almost all older stars, 1 Gyr or more
- Little or no gas and dust
 - Without free gas, no current star formation
- Rotating around the center, same direction as disk, but slower
 - Typical speeds 100 km/s (compare $v_{\odot} = 220$ km/s)
- Much more elliptical orbits
- Lots of up and down motion as well
- Total mass in bulge about $20 \times 10^9 M_{\odot}$

Color of the Bulge

The Shape of the Milky Way's Bulge

- The bulge is approximately 2 kpc in radius and 1 kpc thick
 - Flattened sphere?
- One side of the bulge looks thicker than the other
 - Best guess this side is closer to us
- This implies our galaxy is a *barred* spiral galaxy
 - Bulge is bar shaped

The Milky Way – Basic Structure

The Nucleus

General Description

- Near the center of our galaxy lies the *nucleus*
- Density of stars $\sim 2 \times 10^6 / \text{pc}^3$
 - compare $0.1/pc^3$ near us
- Total mass about $10^7 M_{\odot}$
- Many high mass stars
 - Must be young
 - Some more luminous than $10^6 L_{\odot}$
- Several recent Type II supernova remnants
 - Suggests current star formation
- Lots of gas
 - Much of it at high temperatures
 - Moving in many cases at high velocities
- Intense radio sources can penetrate gas and dust

Details Near the Center

- We see gas heated by super-hot stars
 - More than 100 O and B stars
- We see gas streaming into the center at speeds as high as 1000 km/s
- We see gas producing large amounts of X-rays,
 - Very near the center
- A strong radio source: Sgr A*
 - This seems to be the center of our galaxy

Stars Near the Center

- We see stars orbiting very quickly
- S2 is a star that completes an orbit every 15 years
 - Compare: Sun orbits in 250 Myr
 - Speeds up to 5000 km/s
- By studying orbits of these close stars, we can get an estimate of the mass of the central object
- Mass about $4.15 \times 10^6 M_{\odot}$
- Quite small size
 - Diameter of ring is 0.4 AU
- Only object we can imagine is a black hole
 - Radius 0.09 AU

8 arcsec 1 light year

The Monster in the Middle

We can use the motion to find the distance

- Doppler shift tells us the velocity
- Period & velocity tells us the radius
- Apparent size tells us the distance
 - $7.9 \pm 0.4 \text{ kpc}$

We can also determine the mass of Sagittarius A*

• About 4.15 million M_{\odot}

Radio waves can't come from black hole itself

- Gas from nearby attracted by gravity
- Accelerates to near light speed
- Friction creates heat/X-rays/etc.
- More efficient than any other power source

Black Holes in Galaxies

- Our galaxy contains a $4.15 \times 10^6 M_{\odot}$ black hole
 - Far too large to have formed from a single star
- Most guesses are that they started as one or a few normal black holes
 - Though the earliest black holes were probably pretty massive
- Over time, black holes merged to form a larger black hole
- Black hole also swallowed gas and stars to grow
- Our black hole is not atypical!
- Many galaxies have black holes
 - Probably most galaxies
 - Maybe all galaxies
- Some galactic black holes are smaller, and some are MUCH larger
 - Some more than $41 \times 10^9 M_{\odot}$

The Halo

General Description

The halo is the largest part of the galaxy

- Roughly spherical in shape (not well measured)
- Extends out to ~ 50 kpc in radius (not well measured)
 - Disk ~ 15 kpc

It is made of:

- Individual stars
- Globular clusters
- Thin clouds of gas
- Dark matter!
 - The nature of the dark matter is not known

Halo Stars

- Halo stars are <u>very</u> low metallicity
 - Typically Z < 0.04% (sun Z = 1.6%, thick disk 0.1% to 0.4%)
- Average velocity compared to the Sun of ~ -200 km/s
 - Recall Sun has velocity 220 km/s
 - This means on average they are as likely to be going around the wrong way as the right way
- They have additional random velocities in all three dimensions
 - Order 100 km/s in every direction
 - Indicates they are in all kinds of crazy orbits
- Scale height probably several kpc
 - Probably not well described by the same distribution for disk stars
- Local density is about 0.1% of local disk stars
 - But much thicker layer, so not as rare as you would think
- Total mass of halo stars plus globular clusters around $10^9 \, M_{\odot}$

Globular Clusters - Images

Globular Clusters - Information

In addition to open clusters, there are also *globular clusters*

- They have masses in the range $10^4 10^7 M_{\odot}$
- They usually appear to be permanently gravitationally bound
 - Although some of them are slowly falling apart
- They have metallicity much lower than the Sun (Sun = 1.6%)
 - Metal rich globular clusters have 0.1% < Z < 0.4%
 - Metal poor globular clusters have Z < 0.1%

Metal Rich vs. Metal Poor Globulars

Metal rich Z = 0.1% to 0.4%

- Orbits similar to thick disk stars
- Metal rich globular clusters are very old (commonly > several Gyr)

Metal poor Z = 0.004% to 0.1%

- Orbits similar to halo stars
- Halo stars are probably stars that escaped from globular clusters
- Metal poor globular clusters are the oldest known stars
- Oldest stars known are globular clusters and halo stars
- Best estimate 13 ± 1 Gyr
 - Comparable to best guess of age of universe
- Certainly > 11 Gyr
 - This puts constraints on age of the universe

Distribution of Globular Clusters

- The globular clusters (especially the metal-poor ones) are distributed throughout the halo
 - Very few of them crossing through the disk
- Therefore, we don't have a lot of gas and dust blocking our observations of them
- We can therefore find all their 3D positions pretty well
- It is observed that they are *not* centered on us, but instead on a point about 8 kpc away in the direction of Sagittarius
- This was the first clue of the direction and distance to the center of our galaxy
- We now use other, more accurate measures

Gas in the Halo

- There is a small amount of gas in our halo
 - Elliptical galaxies can have a lot more gas
- Some of this gas is thin and very hot
 - Probably heated by supernovas
 - Expelled from the Milky Way
- But some of it is cold
 - Probably flowing into the galaxy from intergalactic space
 - Probably renews the disk gas

Total Mass of the Galaxy (?)

How much mass is there in the whole galaxy?

- Method #1: Count stars and measure gas
- Method #2: Measure Orbits
- Counting stars and gas indicates a total mass of about 100 billion M_{\odot} . Maybe a little bit more
- Almost all of this mass is closer than the Sun

From orbital motion of the Sun

- Mass closer than Sun is about 90 billion M_{\odot} Expect as we go outwards, this mass will remain about the same
- This results in rotation curves that fall off at large r

<u>Object</u>	$Mass(M_{\odot})$
Disk Stars	60×10^9
Disk Gas	$\sim 10 \times 10^{9}$
Bulge	20×10^{9}
Halo Stars	1×10^{9}
Nucleus	0.01×10^{9}
MACHOS	????
Dark Matter	7777

Populations of Stars

- This is <u>not</u> on the test
 - I am simply informing you in case you need to talk to astronomers
- I am not including it because it is not in the book

Astronomers describe stars as belonging to various "Populations"

- *Population I* stars high metallicity
 - The Sun
 - Thin disk stars
 - Thick disk stars are sometimes called "intermediary"
- Population II stars are stars with low metallicity
 - Halo stars
- *Population III stars* are hypothetical stars with no metals
 - Believed that the first stars in the universe were like this
 - None seen today
 - One of the primary goals of James Webb Space Telescope