
Gravitational Potential Energy
• The potential energy is the (negative of the) integral 

of the force

The gravitational force between two objects:
• The “r-hat” is a unit vector pointing directly away 

from the source of gravity
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Gravity and Orbits
Gauss’s Law for Gravity
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Circular orbits:
• If the velocity is exactly right, you 

get a circular orbit
• Gravitational force must match 

centripetal force
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Other orbits:
• If the velocity is smaller, or a bit

bigger, you get an elliptical orbit
• If the velocity is a lot greater, the

object leaves
• Depends only on speed, not direction

• Kinetic energy must overcome potential energy
• Minimum speed is escape velocity
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• In PHY 114, you learned a lot about electric forces and fields
• We introduced the Electric Field as the force per unit charge
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• Compare this with gravity:
• By analogy, introduce the gravitational field
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• In 114, you learned the total electric flux out of a region was 
related to the total charge in that region:
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• There is an exactly analogous formula for 
the gravitational field:
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m4What’s the gravitational flux 
from the region in this case?
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Gauss’s Law for Gravity



• Gauss’s Law can be used to find the gravitational field when there 
is a lot of symmetry

• Example: Spherical symmetry
• Mass density depends only on distance from center
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• Draw a spherical Gaussian surface 
• Logically, gravitational field is radial everywhere
• Gauss’s Law tells you flux is proportional to contained mass

• The mass contained inside the sphere is just the sum of the
masses on each spherical shell inside it

• The volume of a thin spherical shell is the area of a sphere of
radius r times the thickness dr. 
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A gravitational source takes the form of a uniform sphere 
of density ρ0 and radius a
(a) What is the gravitational field everywhere?
(b) What is the corresponding orbital velocity for 

circular orbits?
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• Consider a slab source, spread out
uniformly in two dimensions
• Density depends only on z.

• Assume the top half has same mass
distribution as the bottom half
• No gravity at z = 0.

• Draw Gaussian surface
• Box from z = 0 to z = Z, of area A.

• Use Gauss’s Law:
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• For uniform density, we find:
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• For electric fields, it is often more useful to work with the electrostatic potential
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Must do inside and outside separately!
• Don’t forget the constant of integration!

( ) ˆdr
dr
Φ

= −g r

• Because the gravitational field is only in the r- direction, 
the potential should depend only on r.

• Therefore, the relationship between Φ and g is:

What is the gravitational potential everywhere for a uniform sphere of density 
ρ0 and radius a?  What is escape velocity from the center of the sphere?
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How can we find the constants of integration?
• Potential at infinity is zero
• Potential at the boundary must be continuous

( )out0 = Φ ∞ out0 C= +

( ) ( )in outa aΦ = Φ
2 3 12 4

0 in 03 3G a C G a aπ ρ π ρ −+ = −

out 0C =

2
in 02C G aπ ρ= −

Sample Problem (1)



What is the gravitational potential everywhere for a uniform sphere of density 
ρ0 and radius a?  What is escape velocity from the center of the sphere?
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• To find escape velocity, match potential and kinetic energy at the origin
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• Consider a galaxy/structure which is not interacting with other galaxies/structures:
• Often a good approximation

• The following must be conserved:
• Total energy, Total momentum, Total angular momentum

Total momentum describes overall motion
• We can eliminate it by working in the “center of mass frame” i i

i
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Energy is more complicated
• Potential and kinetic

• But there can be other contributions
• If gravity is the only force involved,

then global Ep + EK energy is conserved
• Stars, for example, rarely collide

• If there are other effects, like collisions, energy can be transferred and lost
• Gas clouds, in contrast, commonly collide

• Finally, the total angular momentum of the galaxy is conserved
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• Suppose mass is distributed in a continuous manner
• How do we calculate potential and potential energy?

• Divide into many small regions of size dV
• These will each have mass ρ dV

• Convert to an integral:

• Potential energy for the whole system is:
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• Can be rewritten in terms of potential:
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What is the total gravitational binding energy 
for a uniform sphere of mass M and radius a?

( ) ( )2 22
03

3 14
03

3  if ,

if .

G r a r a
r

G a r r a

π ρ

π ρ −

 − <Φ = 
− >

( ) ( )31
2PE d ρ= Φ∫ r r r

( )3 2 2
0 0

1 2 3
2 3PE G d r aπ ρ ρ= ⋅ −∫ r ( )2 2 2 2

0 0

1 4 3
3

a
G r dr r aπ πρ= −∫

2 2 5 2 31
0 5 0

4
3

a
G r a rπ ρ  = − 

2 2 5
0

16
15

G aπ ρ= −
3

0
4
3

M aπ ρ= 0 3

3
4

M
a

ρ
π

=

22 5

3

16 3
15 4P

Ga ME
a

π
π

 = −  
 

23
5P

GME
a

= −

Sample Problem



• If you have many objects, some of them will be at their
maximum, and others at their minimum
• Could this expression be true if you add everything up?

• Consider a complicated combination of many masses acting gravitationally
• Galaxy or Globular cluster, for example, consists of 104 to 1014 stars

• First, find the total kinetic and potential energy
• And the force on any one object

21
2K i

i
E m= ∑ v ( )

3
i j i j

i
j i i j

Gm m

≠

−
= −

−
∑

r r
F

r r
i j

P
i j i j

Gm m
E

<

= −
−∑ r r

• For circular orbits, there is a simple relationship between the 
potential energy and the kinetic energy:

• For non-circular orbits, this is not true, because energy keeps 
changing between the two components.

• However, if you average over time, this will still be true
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constanti i i
i
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E m= ∑ v• We will assume that the system isn’t changing

much; i.e., though the individual stars are moving,
there will be as many moving one way as another
• Galaxy has no net motion
• Any quantity that “adds up” effects of all 

components will be constant

• Consider the following quantity:
• Time derivative should vanish:
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Measuring rotation in our galaxy is hard because we are inside it.

One method for measuring circular rate of rotation at our radius:

• Study proper motion of Sagittarius A* over period of years
• Possible using radio telescopes and interferometry

• Multiply by distance, 8.23 ± 0.12 kpc
• Result is about 230 ± 10 km/s 

• Subtract the Sun’s motion compared to nearby objects (local standard of rest):
• Sun moves forward at 12 ± 2 km/s, upwards at 7 ± 1 km/s, inwards at 11 ± 1 km/s

0 220 20 km/sV = ±

The Sun’s Revolution
Measuring Rotation



For other objects, it is hard to measure their rotation rates
• Assume they are going in circular orbits at speed V
• Let l (galactic longitude) be angle as viewed by us
• Let α be angle of star viewed from center
• Law of cosines:
• Take time derivative:
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Measuring Other Object’s Revolutions (1)



• As we look inward, we see both closer and farther orbits
• We see a mix of red and blue shifts

• As we look outward, we see only more distant orbits
• We see only red or blue shifts, depending on l
• Blue shift forwards
• Red shift backwards

• Conclusion:  Gas clouds at larger radius have
smaller angular velocity (V/R is smaller) 

• V/R decreases with radius
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Measuring Other Object’s Revolutions (2)



• Look inwards/forward at an angle
• Clouds closer to the center will be red-shifted
• Because they are moving at higher angular velocity

• The one closest to the center will be the most red-shifted
• The biggest Doppler red shift lets you calculate V
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• In a similar manner, you can look backwards
• Clouds closer to the center will be blue-shifted
• Because they are moving at higher angular velocity

• The one closest to the center will be the most blue-shifted
• The biggest Doppler blue shift lets you calculate V
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The Tangent Method



• At small radii, the gas cloud orbits are not very circular
• Tangent method gives inaccurate results

• Tangent method only tells you results for inner orbits

• For more distant orbits:

• Measure the distance to a star or
cluster of stars

• Measure radial velocity

• Deduce orbital velocity

Rotations for Other Radii



• Let’s crudely assume the mass is distributed in a spherically symmetric manner
• This is not true, but probably only introduces 10 – 20% error

• Then we can find the mass closer
than the Sun using R0 = 8.3 kpc
• This is the same as the mass of all the stars and gas in the galaxy
• Suggests some missing mass

• Stars can be seen out to at least twice this radius
• Total mass is at least twice this
• Mass is not concentrated near the center

• 21 cm line from atomic hydrogen out to at least 5 times this, maybe more

• We can also study orbits of globular clusters out past 50 kpc
• Finally, there are small galaxies orbiting ours out to 200 kpc or so

• Again, speeds remain comparable

• 90% of the mass of the galaxy is not in the disk (nor the bulge), but in the halo
• Approximately spherically symmetric
• Mass contained in radius R is roughly proportional to R
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• The Halo contains most of the mass of our galaxy
• Probably around 90%

• This matter is dark – it contributes little or nothing to the luminosity

• We don’t know how far it goes out
• At least 100 kpc
• Probably less than half the distance to the next large galaxy

• Andromeda galaxy ½(800 kpc) = 400 kpc
• Probably around 300 kpc

• Total galaxy mass is probably around 1012 M

220 km/sV ≈

( )2 GM R
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Dark Matter

Object  Mass (MSun )
Disk Stars 60 × 109

Disk Gas ~10 × 109

Bulge  20 × 109

Halo Stars 1 × 109

Nucleus  0.01 × 109

Dark Matter > 500 × 109



What could the dark matter be?

• Could it be gas?
• HI regions – produce spectral lines or X-rays – NO
• HII regions – produce the 21 cm line – NO
• Molecular clouds

• Contaminants like CO produce spectral lines – NO
• But perhaps there are clouds that are pure hydrogen – MAYBE 

• Arguments based on cosmology suggest we see most of the gas that is present – PROBABLY NOT

• Could it be massive objects like:
• White dwarfs – difficult to see since they are dim
• Neutron stars – even harder to see
• Black holes – impossible to see
• “Jupiters” or “brown dwarfs” –formed without stars

• These objects are collectively called Massive Compact Halo Objects (MACHOs)

• Invisible massive particles

What is the Dark Matter? (1)



• All of these objects are dim and hard to see
• However, they all have a lot of gravity
• According to Einstein, gravity bends light

• As light passes any point-like source of gravity, it is deflected
• Apparent position of the star is deflected by an angle

MACHOS
• White dwarfs
• Neutron stars
• Black Holes
• Brown dwarfs/ 

“Jupiters”

MACHOs and Bending of Light (1)
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• Label some distances and angles
• Use small angle approximations

• Do some math
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MACHOs and Bending of Light (2)
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• Define the Einstein radius
• Then we need to solve
• Solution is:

dL dLS

dS

x
2

4 LS

L S

GMd
c d d

θ β
θ

− =

2
2

4 LS
E

L S

GMd
c d d

θ ≡

2 2 0Eθ βθ θ− − =

( )2 21
2 4 Eθ β β θ= ± +

• There are, in fact, two images
• One deflected above, as sketched
• One deflected below 

• Unfortunately, these angles are too small to detect
• Nonetheless, they can still magnify the star, making it brighter



MACHOs and Magnification of Light
• To make things simple, assume

shape of star is part of an
annulus centered on the mass
• Any shape can be made of such annuli

• The star actually goes from angle β to β + dβ
• And from azimuthal angle φ to φ + dφ

• Without the mass, the star’s
brightness would be proportional to

• The star’s image goes from angle θ to θ + dθ
• And from azimuthal angle φ to φ + dφ

• The brightness of the image is, therefore, 

• The ratio of these is the magnification
• The actual brightness is the sum

of the two images put together
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MACHOS
• White dwarfs
• Neutron stars
• Black Holes
• Brown dwarfs/“Jupiters”

MACHO:

• Watch a random star

• MACHO will pass in front of it
• Light gets bent
• Star gets brighter
• MACHO moves away
• Star gets dimmer again

What we see:

How to Catch a MACHO

• Lots of stars are variable
• However, these stars will get brighter/dimmer

equally at all wavelengths
• And it will follow curve predicted by theory

• Realistically, watch thousands of stars in small area
• Bulge is a good place to look for them
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• We can study many background stars by looking at the bulge, 
or at the Larger Magellenic Cloud (a small, nearby galaxy)

• Let a computer watch many stars and flag those that change 
brightness

• If they do, study them over time

• Compare multiple wavelengths (variable stars tend to change 
temperature) 

Conclusions:

• MACHOS exist

• Mostly white dwarfs

• Substantial fraction of stars, but not the dark matter

How Many MACHOS Are There?



Dark matter candidates
• Cold hydrogen gas  - Probably not
• White dwarfs
• Neutron stars
• Black Holes
• Brown dwarfs/“Jupiters”
• Invisible massive particles

What Is the Dark Matter? (2)

• We already argued against gas

• MACHOS seem to be ruled out
• A caveat – very small or very large black holes might still work

• Invisible massive particles seem to work
• Neutrinos are particles that we know exist and have mass

• But they probably won’t work
• No other known particles work
• But many speculative theories contain such particles

Probably not



What governs stellar orbits of disk stars:
• For the most part, we can treat all the “other” stars as being uniformly spread out

• Don’t worry about effects of individual other stars

What conservation laws on a particular star can we use to figure out the motion?
• Momentum of star is not conserved – there are forces on it
• Energy conversation helps – but I won’t use this
• Angular momentum conservation? = ×L r p

d d d
dt dt dt

= × + ×
L r pp r 1

m
= × + ×p p r F = ×r F

r
F

• The cross product r × F will not generally vanish
• However, the cross product will always be perpendicular to the vertical direction

• Call this the z –direction
• This component of the motion will be conserved
• The combination Rvφ is conserved

( )z z
L mRvφ= × =r p

Conservation of Angular Momentum
Orbits of Disk Stars



• We will be using cylindrical coordinates:
• R – the distance from the z-axis, vr the corresponding velocity
• z – the vertical distance from the plane, vz the corresponding velocity
• φ – the angle around, vφ the corresponding velocity

• There will potentially be three kinds of motion

• These will have associated with them three angular frequencies
• κ  – angular rate at which it wanders in and out
• ν  – angular rate at which it bobs up and down
• Ω – angular rate at which it goes around

Angular motion – the easiest to understand
• The star goes approximately in a circle
• Assume we know the angular velocity for circular orbits:
• Assume that at some radius R0

 this is exactly vθ
• Approximate angular velocity and angular period is:
• At all other radii, we must have:
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Three Types of Motion



In the vertical direction, there will be small motions

• The star should only be moving a small amount, z small
• Locally, the disk looks much like a uniform slab
• We found the gravitational acceleration previously
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• Simple harmonic motion
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• Star bounces up and down

Up and Down Motion



In the radial direction, star moves in and out somewhat

• I will work in a frame that is rotating around with the galaxy
• In this frame, there will apparently be a centrifugal force

• If it were in a perfectly circular orbit, force would cancel gravitational force, so 
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• This will equal mass times radial acceleration

• We are only interested in near circular orbits, so R ≈ R0 circular and V ≈ V0
• Expand, keep only leading order term 
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In and Out Motion: Epicycles (1)



• Keep only leading order

• This is yet another Harmonic oscillator
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Example: flat rotation curves:
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In and Out Motion: Epicycles (2)



• Spiral Arms vary between galaxies
• Most spiral galaxies have two arms
• Some have three or four
• Some have “partial” spiral arms

• The “winding” nature of them is a bit tricky
• Not just simple winding!

Spiral Arms: What Causes Them?



• In one cycle, spiral 
arms would end up 
completely wound up

• There have been 20 or 
so circuits since the 
beginning

• Therefore, it’s not this 
simple

• It cannot be the same stars that inhabit the 
spiral arm on each cycle

• Different stars, clouds and gas inhabit it in 
each cycle

Simple Winding: The Wrong Theory



• Suppose a region in a rotating spiral galaxy has higher density “clump”
• Due to random fluctuations, nearby galaxies, etc.

• It attracts gas from in front, from behind, from inside, from outside

• But they rotate at different rates, so the “clump” gets spread out

• Which causes still more clumps to form

• The pattern angular frequency Ωgp will be a little
different than the rotation rate Ω
• Because it is spreading in both directions

• How widespread the pattern can be depends on
how many arms m you need

• Can show that pattern only works if Ωgp differs
from Ω by at most κ/m.

gpm mκ κΩ − < Ω < Ω +

Density Waves: The Idea



• The “clumping” works best for objects with nearly perfect circular orbits to start with

• Works best for cool gas
• Molecular clouds – almost in perfect circular orbits

• These regions are where the young stars will form
• Young stars (the brightest) mark out the spiral arms

• Once stars are born, they typically “fall out” of the spiral arms
• The spiral arms are not made of particular stars – they change over time

The Spiral Arms:  What We’re Seeing



Shapes of Clusters

Shape of a cluster (especially globular clusters)

• Typically roughly spherical

• Dense inner region
• Core radius rc

• Sharp dropoff at large radius
• Tidal disruption radius rt
• Region where other gravitational objects have 

stripped stars away

rcrt

Core and Tidal Radius



• Clusters (especially globular clusters) most of the time have relatively little interaction with other 
objects
• Conservation laws should hold within the cluster

• Though they have net momentum, we can ignore that
• Work in center of mass frame of the cluster

• They usually were formed with little or no net angular momentum
• Generally, this will just be conserved, so they stay that way

• Over the course of approximately one orbit, potential energy   kinetic energy

• Therefore, over time, the system will virialize

Conservation Laws with Clusters
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They then evolve due to two types of effects

• Close encounters of pairs of stars in the cluster

• Interaction of passing stars or other mass sources



• When two stars pass near each other, they will alter each others’ orbits
• This changes each star’s momentum and energy, but not the total
• Over time, this allows transfer of energy between all the stars

• System ends up in a sort of
thermal type distribution
• Don’t think of this dynamical “temperature” TD too

literally
• Does not correspond to the temperature of the

stars themselves

• Recall, energy is kinetic plus potential energy
• Note that both terms in the energy are proportional to mass
• The probability distribution prefers lower energy states

• This effect has the most effect on high mass stars

• Therefore:
• High mass stars tend to move at lower velocities
• High mass stars tend to “fall” to the center of the cluster

Close Encounters of Pairs of Stars
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Due to interactions between stars within the cluster:

• Because the distribution depends only on energy, and
this is the same in all directions, the cluster ends up
as a sphere

• The more massive stars are gradually moving
towards the center, and slowing down

• Less massive stars drift towards the edge

• Over time, the core radius rc shrinks smaller and smaller

• Eventually rc shrinks to zero
• Many globular clusters seem to have already reached this stage

• The outer layer should, over time, expand and slowly evaporate off
• But that’s not what we see

rcrt

Evolution of Cluster Shapes



What effect does a passing mass have on a cluster?

• Typically, the passing mass is moving quickly past the cluster
• As it goes by, it pulls on the stars
• Net effect: The entire cluster accelerates in the direction of the 

passing star
• But not evenly!

• We don’t care about the net motion of the cluster
• But we do care about what effect is has on the stars in the cluster
• It pulls most strongly on the part of the cluster near it
• It pulls more weakly on the far part of the cluster
• It pulls diagonally on the parts to the side

• This means it is adding internal kinetic energy to the cluster

rcrt

Effects of Passing Mass on a Cluster (1)



• The initial energy was negative
• Can be easily seen from the

total energy and the virial theorem

• The total energy has increased
• Over one dynamical time scale, this energy will

get distributed between the kinetic and potential
energy according to the virial theorem

• The energy gets redistributed so that the kinetic and potential
energy is shared

• The cluster gets larger and more loosely bound
• Stars near the outer edge eventually get completely stripped away
• This causes there to be a relatively sharp outer boundary

• If the cluster has insufficient mass, it will eventually be entirely disrupted 

rcrt

Effects of Passing Mass on a Cluster (2)
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• Many of the details about how galaxies form structure are not well understood
• Much of our understanding comes from computer simulations, without detailed theories

• If an expert told you everything they knew, some of it would be wrong

• I am not an expert, and hence some of what I am going to tell you is probably wrong

• Take my comments as probably generally right, but probably wrong in details

• And it will doubtless need revision over time

CAUTION!



Shapes of Galaxies

• The stars in a disk are formed from gas and dust in the disk
• We need to understand these objects to understand the stars in them

• Although a galaxy is moving, we are once again not interested in the net motion of the galaxy
• Work in the center of mass frame of the galaxy

• Unlike stars, gas clouds are huge and frequently undergo collisions
• These collisions heat the gas
• The gas then starts to radiate the heat, which leaves the disk
• So we have Kinetic Energy  Heat  Radiation  Lost

• Effectively, energy is not conserved in the gas of the disk

• However, radiation carries off very little momentum
• And therefore, very little angular momentum

• Angular momentum is conserved in the disk

Conservation Laws in Disks



• All stars come initially from clouds of gas
• Initially, the clouds of gas can be any shape
• Stars form throughout the cloud

• Initially probably having little motion

• Gravity pulls the stars towards the center
• Converting gravitational energy to kinetic

• Ultimately, the system virializes

• If there is no net angular momentum, it will
forma sphere
• With stars having random motion in it

• If there is some net angular momentum, it
will form an oblate sphere
• Stars having some random motion
• But more going in direction of rotation

than counter to it
• These early stars may be the bulge stars

Early Star Formation In Galaxies



• The cloud of gas is also getting pulled together

• Because energy is not conserved in this cloud, it can
shrink down a lot more

• It can’t shrink to a point if it has angular
momentum

• It will ultimately become a disk

• Only thing opposing it becoming infinitely
thin is pressure

• The lowest temperature gas (molecular clouds) will make a very thin disk

• New stars will form in this disk

• Hence the youngest stars always form in the thinnest disk

The Shapes of Disks



• Passing galaxies and collisions with small galaxies 
will add kinetic energy to the remaining gas and 
stars

• This causes orbits to distort, no longer circular, and 
moving above and below the plane

• The gas ultimately loses this excess energy
and goes back to being a disk

• But the disk of the stars thickens permanently

• The older parts of the disk will tend to be thicker 
than the younger parts

Evolution of Shapes of Disks



• A perfectly symmetric ellipsoid should remain that 
way indefinitely

• But passing galaxies and other perturbations cause 
distortions

• In the bulge, there is an instability that makes the 
oblate ellipsoid become more elongated (cigar 
shaped)

• In the disk, there are instabilities that cause spiral 
arms to form

• Much of this information comes from computer 
simulations

Instabilities in Disks and Bulges
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