Gravity and Orbits

Gauss's Law for Gravity

Potential Energy from Gravity

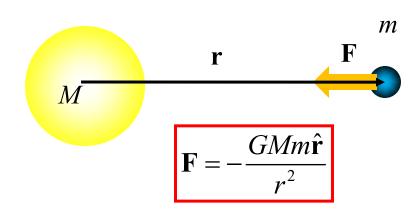
The gravitational force between two objects:

• The "r-hat" is a unit vector pointing directly away from the source of gravity

Gravitational Potential Energy

• The potential energy is the (negative of the) integral of the force

$$E_P = -\int F dr = \int \frac{GMmdr}{r^2}$$



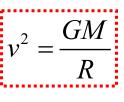
$$\mathbf{F} = -\frac{GMm(\mathbf{r} - \mathbf{r}_{M})}{\left|\mathbf{r} - \mathbf{r}_{M}\right|^{3}}$$

Simple Orbits

Circular orbits:

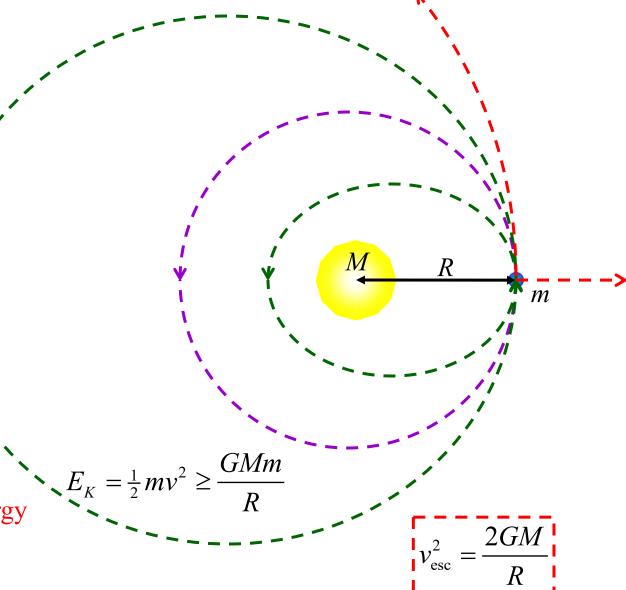
- If the velocity is exactly right, you get a circular orbit
- Gravitational force must match centripetal force

$$F = \frac{GMm}{R^2} = \frac{mv^2}{R}$$



Other orbits:

- If the velocity is smaller, or a bit bigger, you get an elliptical orbit
- If the velocity is a lot greater, the object leaves
 - Depends only on speed, not direction
- Kinetic energy must overcome potential energy
- Minimum speed is *escape velocity*



Gravitational Field

- In PHY 114, you learned a lot about electric forces and fields
- We introduced the *Electric Field* as the force per unit charge

$$\mathbf{F} = \frac{k_e Q q \hat{\mathbf{r}}}{r^2}$$

$$\mathbf{E} = \mathbf{F}/q$$

$$\mathbf{E} = \mathbf{F}/q \qquad \mathbf{E}(\mathbf{r}) = \frac{k_e Q \hat{\mathbf{r}}}{r^2}$$

- Compare this with gravity:
- By analogy, introduce the gravitational field

$$\mathbf{F} = -\frac{GMm\hat{\mathbf{r}}}{r^2}$$

$$\mathbf{g} = \mathbf{F}/m$$

$$\mathbf{g} = \mathbf{F}/m \qquad \mathbf{g}(\mathbf{r}) = -\frac{GM\hat{\mathbf{r}}}{r^2} = -\frac{GM\mathbf{r}}{|\mathbf{r}|^3}$$

$$\mathbf{F} = \mathbf{g}m = m\mathbf{a}$$
$$\mathbf{a} = \mathbf{g}$$

If there are many sources of gravity, their effects must be added up

$$\mathbf{g}(\mathbf{r}) = -\sum_{i} \frac{Gm_{i}(\mathbf{r} - \mathbf{r}_{i})}{|\mathbf{r} - \mathbf{r}_{i}|^{3}}$$

Gauss's Law for Gravity

• In 114, you learned the total electric flux out of a region was related to the total charge in that region:

$$\Phi_E = \int \mathbf{E} \cdot \hat{\mathbf{n}} dA$$

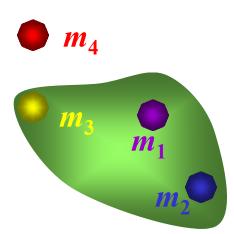
$$\int \mathbf{E} \cdot \hat{\mathbf{n}} dA = 4\pi k_e q$$

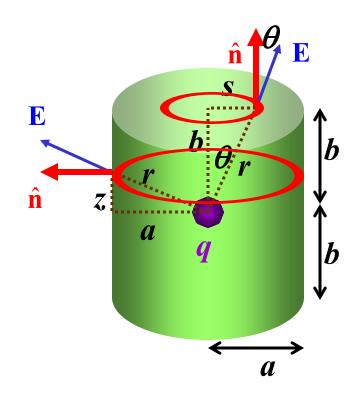
• There is an exactly analogous formula for the gravitational field:

$$\Phi_g = \int \mathbf{g} \cdot \hat{\mathbf{n}} dA = -4\pi GM$$

What's the gravitational flux from the region in this case?

$$\Phi_g = -4\pi G \left(m_1 + m_2 + m_3 \right)$$





Gauss's Law and Spherical Symmetry

- Gauss's Law can be used to find the gravitational field when there is a lot of symmetry
- Example: Spherical symmetry
 - Mass density depends only on distance from center
- Draw a spherical Gaussian surface

$$\rho(\mathbf{r}) = \rho(r)$$

- Logically, gravitational field is radial everywhere
- Gauss's Law tells you flux is proportional to contained mass

$$\Phi_{g}(R) = -4\pi GM(R) \qquad \Phi_{g}(R) = g(R)4\pi R^{2}$$

- The mass contained inside the sphere is just the sum of the masses on each spherical shell inside it
- The volume of a thin spherical shell is the area of a sphere of radius r times the thickness dr.

$$\mathbf{g}(R) = -\frac{GM(R)\hat{\mathbf{r}}}{D^2}$$

$$M(R) = \int_{0}^{R} dM = \int_{0}^{R} \rho(r) dV = \int_{0}^{R} 4\pi r^{2} \rho(r) dr$$

$$\mathbf{g}(R) = -\frac{G\hat{\mathbf{r}}}{R^2} \int_{0}^{R} 4\pi r^2 \rho(r) dr$$

Sample Problem

A gravitational source takes the form of a uniform sphere of density ρ_0 and radius a

- (a) What is the gravitational field everywhere?
- (b) What is the corresponding orbital velocity for circular orbits?

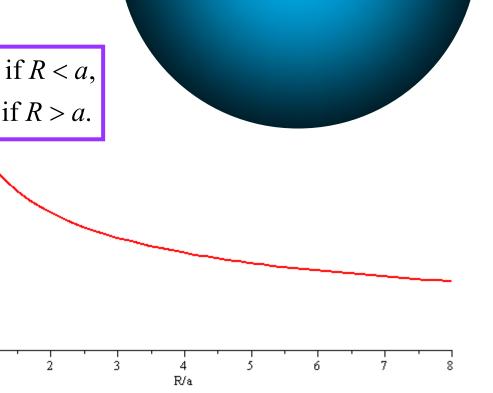
$$\mathbf{g}(R) = -\frac{G\hat{\mathbf{r}}}{R^{2}} \int_{0}^{R} 4\pi r^{2} \rho(r) dr = -\frac{G\hat{\mathbf{r}}}{R^{2}} \int_{0}^{\min(a,R)} 4\pi r^{2} \rho_{0} dr$$

$$= -\frac{G\hat{\mathbf{r}}\rho_{0}}{R^{2}} \frac{4\pi}{3} r^{3} \Big|_{0}^{\min(a,R)}$$

$$\mathbf{g} = \begin{cases} -\frac{4}{3}\pi G \rho_{0} \hat{\mathbf{r}} R & \text{if } R < a, \\ -\frac{4}{3}\pi G \rho_{0} \hat{\mathbf{r}} a^{3} R^{-2} & \text{if } R > a. \end{cases}$$

$$\mathbf{a} = \mathbf{g} = -\frac{\hat{\mathbf{r}}v^2}{R} \qquad \qquad v^2 = Rg$$

$$v = \begin{cases} \sqrt{\frac{4}{3}\pi G \rho_0} R & \text{if } R < a, \\ \sqrt{\frac{4}{3}\pi G \rho_0} a^3 R^{-1/2} & \text{if } R > a. \end{cases}$$



 $\rho(r) = \begin{cases} \rho_0 & \text{if } r < a, \\ 0 & \text{if } r > a. \end{cases}$

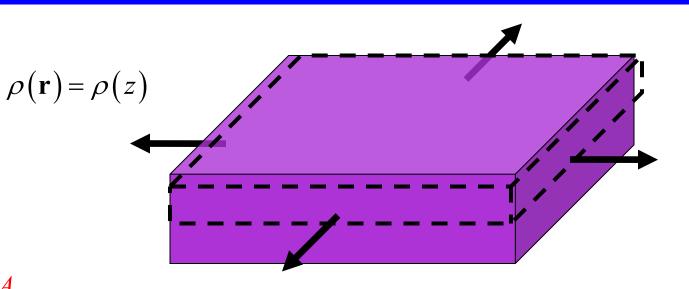
Gauss's Law For a Slab

- Consider a slab source, spread out uniformly in two dimensions
 - Density depends only on z.
- Assume the top half has same mass distribution as the bottom half
 - No gravity at z = 0.
- Draw Gaussian surface
 - Box from z = 0 to z = Z, of area A.
- Use Gauss's Law:

$$\Phi_{g}(Z) = -4\pi GM(Z)$$
 $\Phi_{g}(Z) = g(Z)A$

$$M(Z) = \int_{0}^{Z} dM = \int_{0}^{Z} \rho(z) dV = \int_{0}^{Z} A\rho(z) dz$$

• For uniform density, we find:



$$\mathbf{g}(Z) = -\frac{4\pi GM(Z)\hat{\mathbf{z}}}{A}$$

$$\mathbf{g}(Z) = -4\pi G \hat{\mathbf{z}} \int_{0}^{z} \rho(z) dz$$

$$\mathbf{g}(Z) = -4\pi G \rho_0 Z \hat{\mathbf{z}}$$

Gravitational Potential

• For electric fields, it is often more useful to work with the electrostatic potential

$$V_{E}(\mathbf{r}) = -\int \mathbf{E} \cdot d\mathbf{s} \qquad \mathbf{E} = -\nabla V_{E}(\mathbf{r}) = -\frac{\partial V_{E}}{\partial x} \hat{\mathbf{x}} - \frac{\partial V_{E}}{\partial y} \hat{\mathbf{y}} - \frac{\partial V_{E}}{\partial z} \hat{\mathbf{z}} \qquad V_{E}(\mathbf{r}) = \sum_{i} \frac{k_{e} q_{i}}{|\mathbf{r} - \mathbf{r}_{i}|}$$

• Exactly the same thing can be done for the gravitational field

$$\Phi(\mathbf{r}) = -\int \mathbf{g} \cdot d\mathbf{s} \qquad \mathbf{g} = -\nabla \Phi(\mathbf{r}) = -\frac{\partial \Phi}{\partial x} \hat{\mathbf{x}} - \frac{\partial \Phi}{\partial y} \hat{\mathbf{y}} - \frac{\partial \Phi}{\partial z} \hat{\mathbf{z}}$$

$$\Phi(\mathbf{r}) = -\sum_{i} \frac{Gm_{i}}{|\mathbf{r} - \mathbf{r}_{i}|}$$

• The potential energy for one particle, then, is

$$E_{Pi} = m_i \Phi(\mathbf{r}_i)$$

Sample Problem (1)

What is the gravitational potential everywhere for a uniform sphere of density ρ_0 and radius a? What is escape velocity from the center of the sphere?

- Because the gravitational field is only in the *r* direction, the potential should depend only on *r*.
- Therefore, the relationship between Φ and \mathbf{g} is:

$$\mathbf{g}(r) = -\frac{d\Phi}{dr}\hat{\mathbf{r}}$$

$$\Phi(r) = -\int g(r) dr$$

Must do inside and outside separately!

Don't forget the constant of integration!

$$\Phi_{\rm in}\left(\mathbf{r}\right) = \int \frac{4}{3} \pi G \rho_0 r dr$$

$$\Phi_{\rm in} = \frac{2}{3}\pi G \rho_0 r^2 + C_{\rm in}$$

$$\Phi_{\text{out}}\left(\mathbf{r}\right) = \int \frac{4}{3} \pi G \rho_0 a^3 r^{-2} dr$$

$$\Phi_{\text{out}} = -\frac{4}{3}\pi G \rho_0 a^3 r^{-1} + C_{\text{out}}$$

How can we find the constants of integration?

• Potential at the boundary must be continuous

$$\frac{2}{3}\pi G\rho_0 a^2 + C_{\text{in}} = -\frac{4}{3}\pi G\rho_0 a^3 a^{-1}$$

$$C_{\rm in} = -2\pi G \rho_0 a^2$$

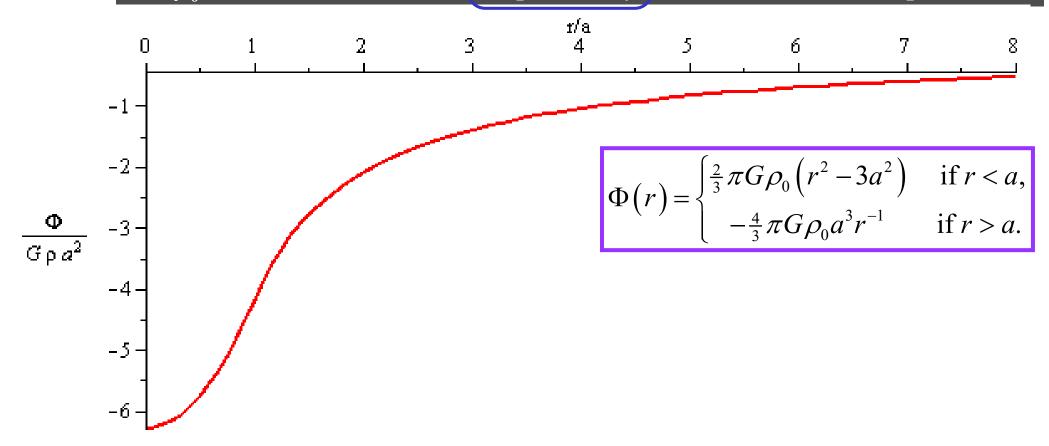
$$0 = \Phi_{\text{out}}(\infty) = 0 + C_{\text{out}} \qquad C_{\text{out}} = 0$$

$$\Phi_{\rm in}(a) = \Phi_{\rm out}(a)$$

 $\mathbf{g}(r) = \begin{cases} -\frac{4}{3}\pi G \rho_0 \hat{\mathbf{r}} r & \text{if } r < a, \\ -\frac{4}{3}\pi G \rho_0 \hat{\mathbf{r}} a^3 r^{-2} & \text{if } r > a. \end{cases}$

Sample Problem (2)

What is the gravitational potential everywhere for a uniform sphere of density ρ_0 and radius a? What is escape velocity from the center of the sphere?



To find escape velocity, match potential and kinetic energy at the origin

$$|E_P| = m |\Phi(0)| = 2\pi G \rho_0 a^2 m = E_K = \frac{1}{2} m v^2$$

$$\left|v_{\rm esc}^2 = 4\pi G \rho_0 a^2\right| = 3GM/a$$

Global Conservation Laws

- Consider a galaxy/structure which is not interacting with other galaxies/structures:
 - Often a good approximation
- The following must be conserved:
 - Total energy, Total momentum, Total angular momentum

Total momentum describes overall motion

• We can eliminate it by working in the "center of mass frame"

$$\mathbf{P} = \sum_{i} m_{i} \mathbf{v}_{i}$$

Energy is more complicated

- Potential and kinetic
- But there can be other contributions
- If gravity is the only force involved, then global $E_p + E_K$ energy is conserved
 - Stars, for example, rarely collide
- If there are other effects, like collisions, energy can be transferred and lost
 - Gas clouds, in contrast, commonly collide
- Finally, the *total* angular momentum of the galaxy is conserved

$$\mathbf{L} = \sum_{i} m_{i} \mathbf{r}_{i} \times \mathbf{v}_{i}$$

$$E = E_P + E_K + E_{\text{other}}$$

$$E_P = \sum_{i < j} \frac{Gm_i m_j}{|\mathbf{r}_i - \mathbf{r}_j|} \qquad E_K = \sum_i \frac{1}{2} m_i \mathbf{v}_i^2$$

Gravitational Potential from a Distribution

- Suppose mass is distributed in a continuous manner
 - How do we calculate potential and potential energy?

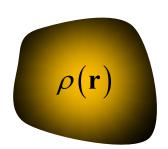
$$\Phi(\mathbf{r}) = -\sum_{i} \frac{Gm_{i}}{|\mathbf{r} - \mathbf{r}_{i}|}$$

- Divide into many small regions of size dV
 - These will each have mass ρdV

$$\Phi(\mathbf{r}) = -\sum_{i} \frac{G\rho_{i}(\mathbf{r}_{i})dV_{i}}{|\mathbf{r} - \mathbf{r}_{i}|}$$

• Convert to an integral:

$$\Phi(\mathbf{r}) = -\int \frac{G\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}'$$



• Potential energy for the whole system is:

$$E_{P} = -\sum_{i < j} \frac{Gm_{i}m_{j}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|} = -\frac{1}{2} \sum_{i \neq j} \frac{Gm_{i}m_{j}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|} = -\frac{1}{2} \sum_{i \neq j} \frac{G\rho(\mathbf{r}_{i})dV_{i}\rho(\mathbf{r}_{j})dV_{j}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|}$$

Can be rewritten in terms of potential:

$$E_P = \frac{1}{2} \int d^3 \mathbf{r} \rho(\mathbf{r}) \Phi(\mathbf{r})$$

$$E_P = -\frac{1}{2} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{G \rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Sample Problem

What is the total gravitational binding energy for a uniform sphere of mass M and radius a?

$$E_P = \frac{1}{2} \int d^3 \mathbf{r} \rho(\mathbf{r}) \Phi(\mathbf{r})$$

$$\Phi(r) = \begin{cases} \frac{2}{3}\pi G \rho_0 (r^2 - 3a^2) & \text{if } r < a, \\ -\frac{4}{3}\pi G \rho_0 a^3 r^{-1} & \text{if } r > a. \end{cases}$$

$$E_{P} = \frac{1}{2} \cdot \frac{2}{3} \pi G \int d^{3} \mathbf{r} \rho_{0} \rho_{0} \left(r^{2} - 3a^{2} \right) = \frac{1}{3} \pi G 4 \pi \rho_{0}^{2} \int_{0}^{a} r^{2} dr \left(r^{2} - 3a^{2} \right) = \frac{4}{3} \pi^{2} G \rho_{0}^{2} \left[\frac{1}{5} r^{5} - a^{2} r^{3} \right]_{0}^{a}$$

$$= -\frac{16}{15} \pi^{2} G \rho_{0}^{2} a^{5}$$

$$M = \frac{4}{3} \pi a^{3} \rho_{0}$$

$$\rho_{0} = \frac{3M}{4 \pi a^{3}}$$

$$= -\frac{16}{15} \pi^{2} G \rho_{0}^{2} a^{5}$$

$$E_{P} = -\frac{16\pi^{2}Ga^{5}}{15} \left(\frac{3M}{4\pi a^{3}}\right)^{2} \qquad E_{P} = -\frac{3GM^{2}}{5a}$$

$$E_P = -\frac{3GM^2}{5a}$$

Virial Theorem (1)

- For circular orbits, there is a simple relationship between the potential energy and the kinetic energy:
- For non-circular orbits, this is not true, because energy keeps changing between the two components.
- However, if you average over time, this will still be true
- If you have *many* objects, some of them will be at their maximum, and others at their minimum
 - Could this expression be true if you add everything up?
- Consider a complicated combination of *many* masses acting gravitationally
 - Galaxy or Globular cluster, for example, consists of 10⁴ to 10¹⁴ stars
- First, find the total kinetic and potential energy
- And the force on any one object

$$E_K = \sum_{i=1}^{n} m \mathbf{v}_i^2 \qquad E_P = -\sum_{i < j} \frac{Gm_i m_j}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} \qquad \mathbf{F}_i = -\sum_{j \neq i} \frac{Gm_i m_j \left(\mathbf{r}_i - \mathbf{r}_j \right)}{\left| \mathbf{r}_i - \mathbf{r}_j \right|^3}$$

$$E_{P} = -\frac{GMm}{r}$$

$$E_{K} = \frac{1}{2}m\mathbf{v}^{2} = \frac{1}{2}m\frac{GM}{r}$$

$$2E_{K} + E_{P} = 0$$

$$2\langle E_{K} \rangle + \langle E_{P} \rangle = 0$$

$$\mathbf{F}_{i} = -\sum_{j \neq i} \frac{Gm_{i}m_{j} \left(\mathbf{r}_{i} - \mathbf{r}_{j}\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|^{3}}$$

Virial Theorem (2)

- We will assume that the system isn't changing $E_K = \sum_{i=1}^{\infty} m \mathbf{v}_i^2$ much; *i.e.*, though the individual stars are moving, $E_K = \sum_{i=1}^{\infty} m \mathbf{v}_i^2$ $E_K = \sum_{i=1}^{\infty} m \mathbf{v}_i^2$ • We will assume that the system isn't changing there will be as many moving one way as another
 - Galaxy has no net motion
 - Any quantity that "adds up" effects of all components will be constant

$$E_K = \sum_i \frac{1}{2} m \mathbf{v}_i^2$$

$$E_P = -\sum_{i < j} \frac{Gm_i m_j}{\left| \mathbf{r}_i - \mathbf{r}_j \right|}$$

$$\mathbf{F}_{i} = -\sum_{j \neq i} \frac{Gm_{i}m_{j}\left(\mathbf{r}_{i} - \mathbf{r}_{j}\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|^{3}}$$

- Consider the following quantity: $\sum_{i} m_i \mathbf{r}_i \cdot \mathbf{v}_i = \text{constant}$
- Time derivative should vanish:

$$0 = \sum_{i} \frac{d}{dt} \left(m_{i} \mathbf{r}_{i} \cdot \mathbf{v}_{i} \right) = \sum_{i} \left(m_{i} \frac{d\mathbf{r}_{i}}{dt} \cdot \mathbf{v}_{i} + m_{i} \mathbf{r}_{i} \cdot \frac{d\mathbf{v}_{i}}{dt} \right) = \sum_{i} \left(m_{i} \mathbf{v}_{i}^{2} + \mathbf{r}_{i} \cdot \mathbf{F}_{i} \right)$$

$$= 2E_{K} - \sum_{i} \sum_{j \neq i} G m_{i} m_{j} \frac{\mathbf{r}_{i} \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right)}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{3}} = 2E_{K} - \sum_{i < j} G m_{i} m_{j} \left[\frac{\mathbf{r}_{i} \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right)}{\left| \mathbf{r}_{i} - \mathbf{r}_{i} \right|^{3}} + \frac{\mathbf{r}_{j} \cdot \left(\mathbf{r}_{j} - \mathbf{r}_{i} \right)}{\left| \mathbf{r}_{j} - \mathbf{r}_{i} \right|^{3}} \right]$$

$$= 2E_{K} - \sum_{i < j} G m_{i} m_{j} \frac{\left(\mathbf{r}_{i} - \mathbf{r}_{j} \right)^{2}}{\left| \mathbf{r}_{i} - \mathbf{r}_{i} \right|^{3}} = 2E_{K} + E_{P}$$

$$2E_{K} + E_{P} = 0$$

$$2E_K + E_P = 0$$

Measuring Rotation The Sun's Revolution

Measuring rotation in our galaxy is *hard* because we are inside it.

One method for measuring circular rate of rotation at our radius:

- Study proper motion of Sagittarius A* over period of years
 - Possible using radio telescopes and interferometry
- Multiply by distance, 8.23 ± 0.12 kpc
 - Result is about 230 \pm 10 km/s
- Subtract the Sun's motion compared to nearby objects (local standard of rest):
 - Sun moves forward at 12 ± 2 km/s, upwards at 7 ± 1 km/s, inwards at 11 ± 1 km/s

$$V_0 = 220 \pm 20 \text{ km/s}$$

Measuring Other Object's Revolutions (1)

For other objects, it is *hard* to measure their rotation rates

- Assume they are going in circular orbits at speed V
- Let *l* (galactic longitude) be angle as viewed by us
- Let α be angle of star viewed from center
- Law of cosines:
- Take time derivative: $D^2 = R^2 + R_0^2 2RR_0 \cos \alpha$

$$v_r = \frac{RR_0}{D}\sin\alpha\frac{d\alpha}{dt}$$
 $2D\frac{dD}{dt} = 2RR_0\sin\alpha\frac{d\alpha}{dt}$

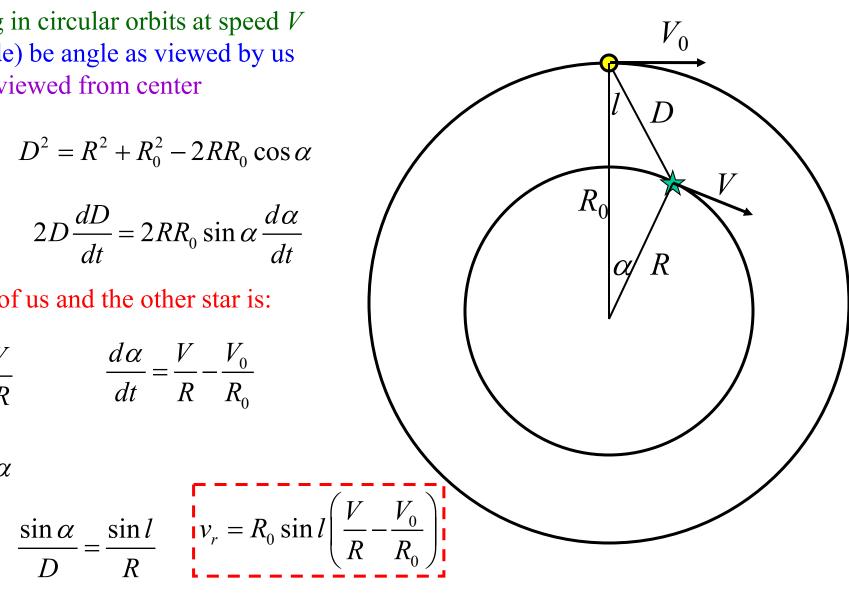
The angular velocity of us and the other star is:

$$\frac{d\theta_0}{dt} = \frac{V_0}{R_0} \qquad \frac{d\theta}{dt} = \frac{V}{R} \qquad \frac{d\alpha}{dt} = \frac{V}{R} - \frac{V_0}{R_0}$$

$$v_r = \frac{RR_0}{D} \left(\frac{V}{R} - \frac{V_0}{R_0} \right) \sin \alpha$$

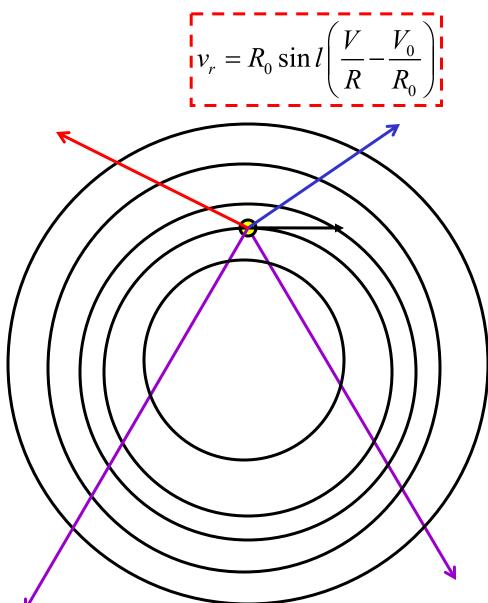
Law of sines:

$$\frac{\sin \alpha}{D} = \frac{\sin l}{R}$$



Measuring Other Object's Revolutions (2)

- As we look inward, we see both closer and farther orbits
 - We see a mix of red and blue shifts
- As we look outward, we see only more distant orbits
 - We see only red or blue shifts, depending on *l*
 - Blue shift forwards
 - Red shift backwards
- Conclusion: Gas clouds at larger radius have smaller angular velocity (V/R is smaller)
- V/R decreases with radius



The Tangent Method

- Look inwards/forward at an angle
 - Clouds closer to the center will be red-shifted
 - Because they are moving at higher angular velocity
- The one closest to the center will be the most red-shifted
- The biggest Doppler red shift lets you calculate V

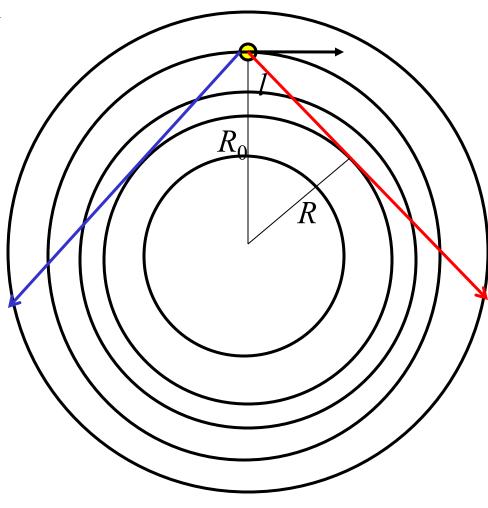
$$V = \frac{R}{R_0} \left(\frac{v_r}{\sin l} + V_0 \right) \qquad R = R_0 \sin l$$

$$V\big|_{R_0 \sin l} = v_r + V_0 \sin l$$

- In a similar manner, you can look backwards
 - Clouds closer to the center will be blue-shifted
 - Because they are moving at higher angular velocity
- The one closest to the center will be the most blue-shifted
- The biggest Doppler blue shift lets you calculate V

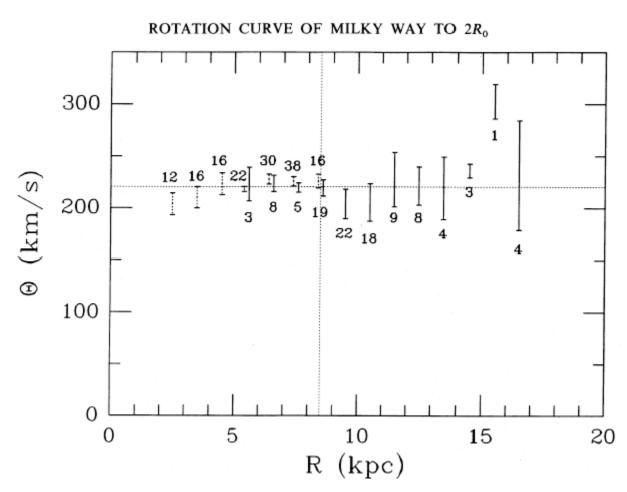
$$V\big|_{-R_0\sin l} = -v_r - V_0\sin l$$

$$v_r = R_0 \sin l \left(\frac{V}{R} - \frac{V_0}{R_0} \right)$$



Rotations for Other Radii

- At small radii, the gas cloud orbits are not very circular
 - Tangent method gives inaccurate results
- Tangent method only tells you results for inner orbits
- For more distant orbits:
- Measure the distance to a star or cluster of stars
- Measure radial velocity
- Deduce orbital velocity

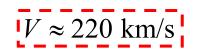


Rotation Curves and Mass Distribution

- Let's crudely assume the mass is distributed in a spherically symmetric manner
 - This is *not* true, but probably only introduces 10 20% error
- Then we can find the mass closer than the Sun using $R_0 = 8.3$ kpc

$$M(R_0) \approx 93 \times 10^9 M_{\odot}$$

- This is the same as the mass of *all* the stars and gas in the galaxy
- Suggests some missing mass
- Stars can be seen out to at least twice this radius
 - Total mass is at least twice this
 - Mass is *not* concentrated near the center
- 21 cm line from atomic hydrogen out to at least 5 times this, maybe more
- We can also study orbits of globular clusters out past 50 kpc
- Finally, there are small galaxies orbiting ours out to 200 kpc or so
 - Again, speeds remain comparable
- 90% of the mass of the galaxy is <u>not</u> in the disk (nor the bulge), but in the halo
- Approximately spherically symmetric
- Mass contained in radius *R* is roughly proportional to *R*



$$V^2 = \frac{GM(R)}{R}$$

Dark Matter

- The Halo contains most of the mass of our galaxy
 - Probably around 90%

 $V^2 = \frac{GM(R)}{R}$

 $V \approx 220 \text{ km/s}$

- We don't know how far it goes out
 - At least 100 kpc
 - Probably less than half the distance to the next large galaxy
 - Andromeda galaxy $\frac{1}{2}(800 \text{ kpc}) = 400 \text{ kpc}$
 - Probably around 300 kpc
- Total galaxy mass is probably around $10^{12} M_{\odot}$

<u>Object</u>	$\underline{\text{Mass}}(\underline{M_{Sun}})$
Disk Stars	60×10^9
Disk Gas	$\sim 10 \times 10^{9}$
Bulge	20×10^{9}
Halo Stars	1×10^{9}
Nucleus	0.01×10^9
Dark Matter	$> 500 \times 10^9$
Bulge Halo Stars Nucleus	20×10^9 1×10^9 0.01×10^9

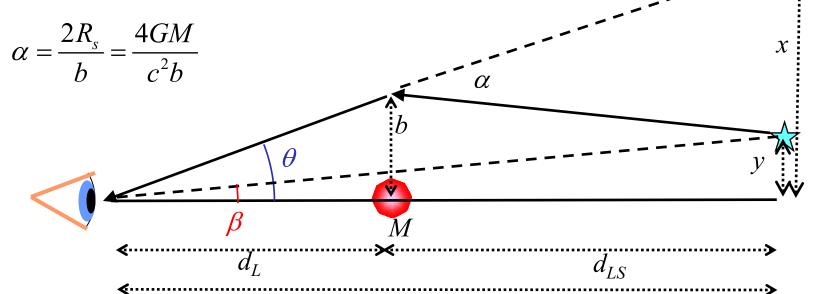
What is the Dark Matter? (1)

What could the dark matter be?

- Could it be gas?
 - HI regions produce spectral lines or X-rays NO
 - HII regions produce the 21 cm line NO
 - Molecular clouds
 - Contaminants like CO produce spectral lines NO
 - But perhaps there are clouds that are pure hydrogen MAYBE
- Arguments based on cosmology suggest we see most of the gas that is present PROBABLY NOT
- Could it be massive objects like:
 - White dwarfs difficult to see since they are dim
 - Neutron stars even harder to see
 - Black holes impossible to see
 - "Jupiters" or "brown dwarfs" –formed without stars
- These objects are collectively called Massive Compact Halo Objects (MACHOs)
- Invisible massive particles

MACHOs and Bending of Light (1)

- All of these objects are dim and hard to see
- However, they all have a lot of gravity
- According to Einstein, gravity bends light
- As light passes any point-like source of gravity, it is deflected
- Apparent position of the star is deflected by an angle



- Label some distances and angles
- Use small angle approximations

d_{S}

$$\theta - \beta = \frac{x - y}{d_s} = \frac{d_{LS}\alpha}{d_S} = \frac{4GMd_{LS}}{c^2bd_S} = \frac{4GMd_{LS}}{c^2d_Ld_S\theta}$$

• Do some math

MACHOS

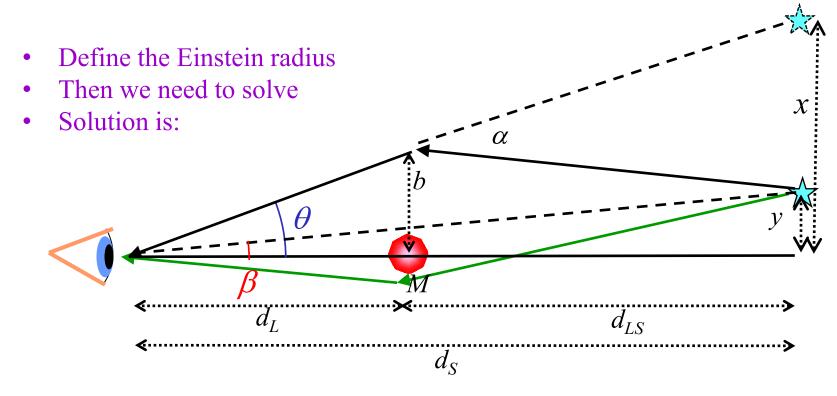
- White dwarfs
- Neutron stars
- Black Holes
- Brown dwarfs/ "Jupiters"

$$\theta = \frac{b}{d_L} = \frac{x}{d_S}$$

$$\beta = \frac{y}{d_s}$$

$$\alpha = \frac{x - y}{d_{LS}}$$

MACHOs and Bending of Light (2)



$$\theta - \beta = \frac{4GMd_{LS}}{c^2d_Ld_S\theta}$$

$$\theta_E^2 = \frac{4GMd_{LS}}{c^2d_Ld_S}$$

$$\theta^2 - \beta\theta - \theta_F^2 = 0$$

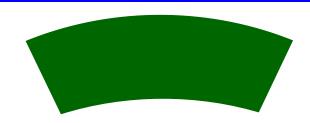
$$\theta = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

- There are, in fact, *two* images
 - One deflected above, as sketched
 - One deflected below
- Unfortunately, these angles are too small to detect
- Nonetheless, they can still magnify the star, making it brighter

MACHOs and Magnification of Light

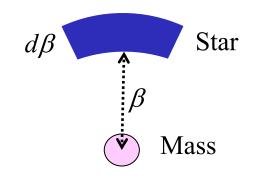
• To make things simple, assume shape of star is part of an annulus centered on the mass

$$\theta = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$



- Any shape can be made of such annuli
- The star *actually* goes from angle β to $\beta + d\beta$
 - And from azimuthal angle ϕ to $\phi + d\phi$
- Without the mass, the star's brightness would be proportional to

$$F_{S} \propto (\beta d\phi)(d\beta)$$



- The star's *image* goes from angle θ to $\theta + d\theta$
 - And from azimuthal angle ϕ to $\phi + d\phi$
- The brightness of the image is, therefore,
- The ratio of these is the magnification
- The actual brightness is the sum of the two images put together

$$F_I \propto (\theta d\phi)(d\theta)$$

$$A_{\pm} = \left| \frac{\theta}{\beta} \frac{d\theta}{d\beta} \right| = \frac{1}{4} \left(\frac{\beta}{\sqrt{\beta^2 + 4\theta_E^2}} + \frac{\sqrt{\beta^2 + 4\theta_E^2}}{\beta} \pm 2 \right)$$

$$A_{tot} = \frac{1}{2} \left(\frac{\beta}{\sqrt{\beta^2 + 4\theta_E^2}} + \frac{\sqrt{\beta^2 + 4\theta_E^2}}{\beta} \right)$$

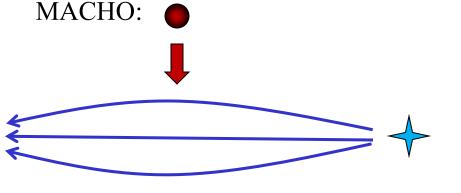
How to Catch a MACHO

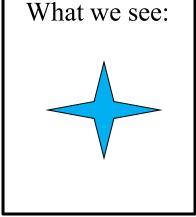
$$A_{tot} = \frac{1}{2} \left(\frac{\beta}{\sqrt{\beta^2 + 4\theta_E^2}} + \frac{\sqrt{\beta^2 + 4\theta_E^2}}{\beta} \right)$$

- Watch a random star
- MACHO will pass in front of it
- Light gets bent
- Star gets brighter
- MACHO moves away
- Star gets dimmer again
- Lots of stars are variable
- However, these stars will get brighter/dimmer equally at all wavelengths
- And it will follow curve predicted by theory
- Realistically, watch thousands of stars in small area
 - Bulge is a good place to look for them

MACHOS

- White dwarfs
- Neutron stars
- Black Holes
- Brown dwarfs/"Jupiters"



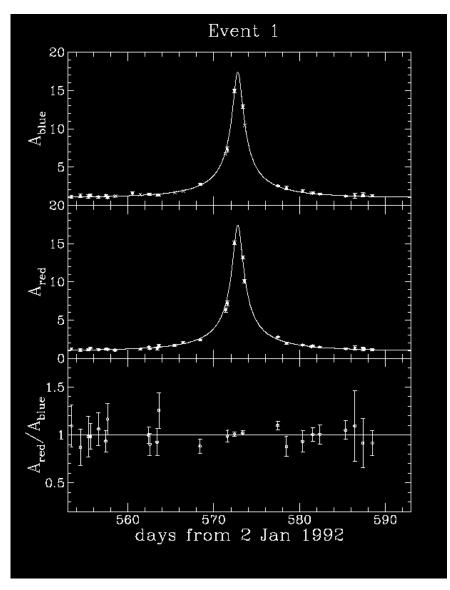


How Many MACHOS Are There?

- We can study many background stars by looking at the bulge, or at the Larger Magellenic Cloud (a small, nearby galaxy)
- Let a computer watch *many* stars and flag those that change brightness
- If they do, study them over time
- Compare multiple wavelengths (variable stars tend to change temperature)

Conclusions:

- MACHOS exist
- Mostly white dwarfs
- Substantial fraction of stars, but *not* the dark matter



What Is the Dark Matter? (2)

Dark matter candidates

Cold hydrogen gas - Probably not

Probably not

- White dwarfs
- Neutron stars
- Black Holes
- Brown dwarfs/"Jupiters"
- <u>Invisible massive particles</u>
- We already argued against gas
- MACHOS seem to be ruled out
 - A caveat very small or very large black holes might still work
- Invisible massive particles seem to work
 - Neutrinos are particles that we know exist and have mass
 - But they probably won't work
 - No other known particles work
 - But many speculative theories contain such particles

Orbits of Disk Stars

Conservation of Angular Momentum

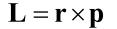
What governs stellar orbits of disk stars:

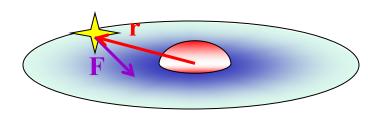
- For the most part, we can treat all the "other" stars as being uniformly spread out
 - Don't worry about effects of individual other stars

What conservation laws on a particular star can we use to figure out the motion?

- Momentum of star is not conserved there are forces on it
- Energy conversation helps but I won't use this
- Angular momentum conservation?

$$\frac{d\mathbf{L}}{dt} = \frac{d\mathbf{r}}{dt} \times \mathbf{p} + \mathbf{r} \times \frac{d\mathbf{p}}{dt} = \frac{1}{m} \mathbf{p} \times \mathbf{p} + \mathbf{r} \times \mathbf{F} = \mathbf{r} \times \mathbf{F}$$





- The cross product $\mathbf{r} \times \mathbf{F}$ will <u>not</u> generally vanish
- However, the cross product *will* always be perpendicular to the vertical direction
 - Call this the *z* –direction
- This *component* of the motion will be conserved
- The combination Rv_{ϕ} is conserved

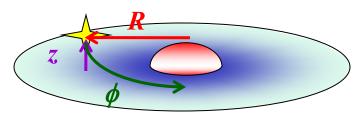
$$L_z = (\mathbf{r} \times \mathbf{p})_z = mRv_{\phi}$$

Three Types of Motion

• We will be using cylindrical coordinates:

 $Rv_{\phi} = \text{constant}$

- R the distance from the z-axis, v_r the corresponding velocity
- z the vertical distance from the plane, v_z the corresponding velocity
- ϕ the angle around, v_{ϕ} the corresponding velocity
- There will potentially be three kinds of motion



- These will have associated with them three angular frequencies
 - κ angular rate at which it wanders in and out
 - v angular rate at which it bobs up and down
 - Ω angular rate at which it goes around

Angular motion – the easiest to understand

- The star goes *approximately* in a circle
- Assume we know the angular velocity for circular orbits:
- Assume that at some radius R_0 this is exactly v_θ
- Approximate angular velocity and angular period is:
- At all other radii, we must have:

$$Rv_{\phi} = R_0 V_0$$

 V^2 known

$$v_{\theta}\big|_{R_0} = V\big|_{R_0} = V_0$$

$$v_{\phi} = \frac{R_0 V_0}{R}$$

$$\Omega = \frac{V_0}{R_0}$$

$$T_{\phi} = \frac{2\pi}{\Omega}$$

Up and Down Motion

In the vertical direction, there will be small motions

- The star should only be moving a small amount, z small
- Locally, the disk looks much like a uniform slab
- We found the gravitational acceleration previously

$$\mathbf{g}(z) = -4\pi G \rho_0 z \hat{\mathbf{z}}$$

$$\frac{d^2z}{dt^2} = -4\pi G \rho_0 z$$

- This looks like Hooke's Law
 - Simple harmonic motion

$$v = \sqrt{4\pi G \rho_0}$$

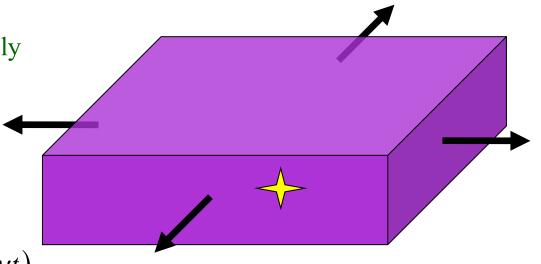
$$\frac{d^2 z}{dt^2} = -v^2 z \qquad z(t) = z_0 \sin(vt)$$

$$\frac{d^2z}{dt^2} = -v^2z$$

$$z(t) = z_0 \sin(\nu t)$$

Star bounces up and down

$$T_z = \frac{2\pi}{v}$$



In and Out Motion: Epicycles (1)

In the radial direction, star moves in and out somewhat

- I will work in a frame that is rotating around with the galaxy
 - In this frame, there will apparently be a centrifugal force

$$v_{\phi} = \frac{R_0 V_0}{R}$$

$$F_c = \frac{m v_{\phi}^2}{R}$$

 $F_g = -\frac{mV^2}{P}$

- If it were in a perfectly circular orbit, force would cancel gravitational force, so
- Effective force is the sum of these two

$$F_r = F_c + F_g = \frac{mv_{\phi}^2}{R} - \frac{mV^2}{R} = m\frac{d^2R}{dt^2}$$

- This will equal mass times radial acceleration
- We are only interested in near circular orbits, so $R \approx R_0$ circular and $V \approx V_0$
- Expand, keep only leading order term

$$\frac{d^2R}{dt^2} = \frac{R_0^2 V_0^2}{R^3} - \frac{V_0^2}{R} + \frac{V_0^2}{R} - \frac{V^2}{R} = \frac{V_0^2 \left(R_0^2 - R^2\right)}{R^3} + \frac{V_0^2 - V^2}{R}$$

In and Out Motion: Epicycles (2)

$$\frac{d^2R}{dt^2} = \frac{V_0^2 \left(R_0^2 - R^2\right)}{R^3} + \frac{\left(V_0^2 - V^2\right)}{R}$$

• Taylor expand V^2 around R_0 , then substitute:

$$\frac{d^{2}R}{dt^{2}} = -\left(R - R_{0}\right) \frac{V_{0}^{2}\left(R + R_{0}\right)}{R^{3}} - \left(R - R_{0}\right) \frac{1}{R} \frac{d}{dR} V^{2} \Big|_{R_{0}}$$

• Keep only leading order

$$\frac{d^{2}R}{dt^{2}} = -\left(R - R_{0}\right) \left[\frac{2V_{0}^{2}}{R_{0}^{2}} + \frac{1}{R_{0}}\frac{d}{dR}V^{2}\Big|_{R_{0}}\right]$$

This is yet another Harmonic oscillator

$$R(t) = R_0 + (\Delta R) \sin(\kappa t)$$

Example: flat rotation curves:

$$\kappa^2 = \frac{2V_0^2}{r_0^2} = 2\Omega^2 \qquad \kappa = \sqrt{2}\Omega \qquad T_r = \frac{T_\phi}{\sqrt{2}}$$

$$V^2 \approx V_0^2 + (R - R_0) \frac{d}{dR} V^2 \Big|_{R_0}$$

$$\kappa^2 = \frac{2V_0^2}{R_0^2} + \frac{1}{R_0} \frac{d}{dR} V^2 \Big|_{R_0}$$

$$\frac{d^2R}{dt^2} = -\kappa^2 \left(R - R_0 \right)$$

$$T_r = \frac{2\pi}{\kappa}$$

Spiral Arms: What Causes Them?

- Spiral Arms vary between galaxies
 - Most spiral galaxies have two arms
 - Some have three or four
 - Some have "partial" spiral arms
- The "winding" nature of them is a bit tricky
 - Not just simple winding!

Simple Winding: The Wrong Theory

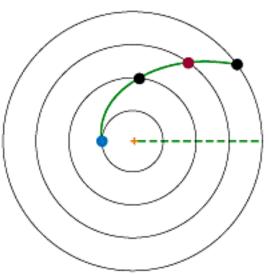
- In one cycle, spiral arms would end up completely wound up
- There have been 20 or so circuits since the beginning

• Therefore, it's not this simple

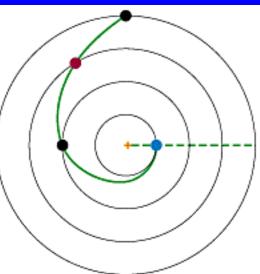
3 kpc cloud cloud

 A string of gas clouds lines up radially

- It cannot be the *same stars* that inhabit the spiral arm on each cycle
- Different stars, clouds and gas inhabit it in each cycle



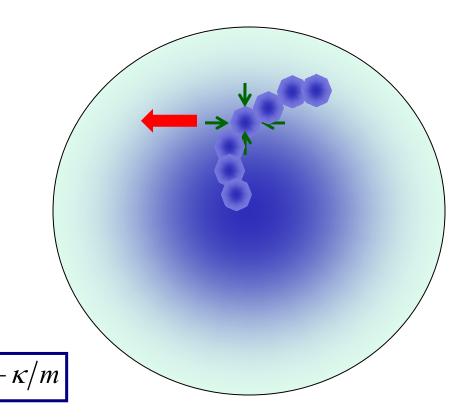
B The 3 kpc cloud completes half of a revolution in the time the 8.5 kpc cloud completes ¹/₆ of a revolution



C The 3 kpc cloud will pass the 8.5 kpc cloud in little more than one orbit

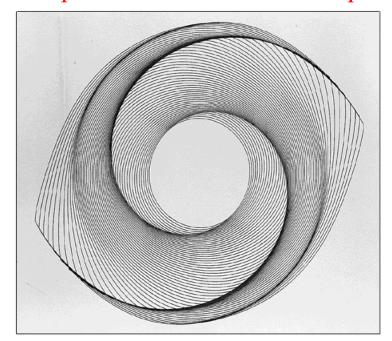
Density Waves: The Idea

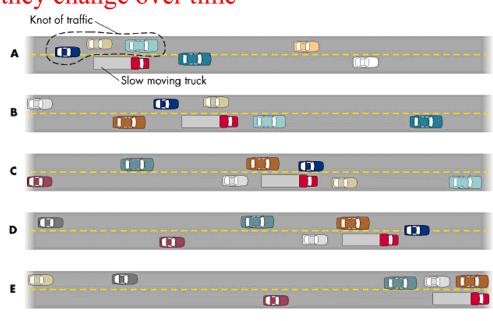
- Suppose a region in a rotating spiral galaxy has higher density "clump"
 - Due to random fluctuations, nearby galaxies, etc.
- It attracts gas from in front, from behind, from inside, from outside
- But they rotate at different rates, so the "clump" gets spread out
- Which causes still more clumps to form
- The pattern angular frequency Ω_{gp} will be a little different than the rotation rate Ω
 - Because it is spreading in both directions
- How widespread the pattern can be depends on how many arms *m* you need
- Can show that pattern only works if $\Omega_{\rm gp}$ differs from Ω by at most κ/m . $\Omega \kappa/m < \Omega_{\rm op} < \Omega + \kappa/m$



The Spiral Arms: What We're Seeing

- The "clumping" works best for objects with nearly perfect circular orbits to start with
- Works best for cool gas
 - Molecular clouds almost in perfect circular orbits
- These regions are where the young stars will form
- Young stars (the brightest) mark out the spiral arms
- Once stars are born, they typically "fall out" of the spiral arms
 - The spiral arms are *not* made of particular stars they change over time

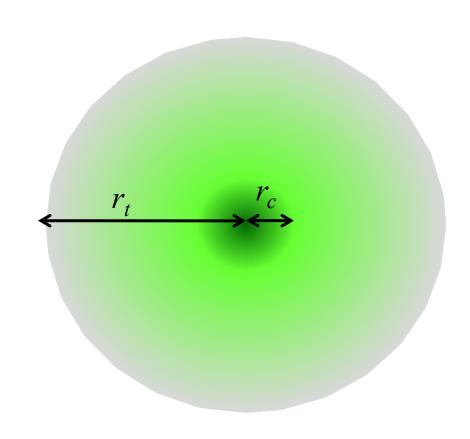




Shapes of Clusters Core and Tidal Radius

Shape of a cluster (especially globular clusters)

- Typically roughly spherical
- Dense inner region
 - Core radius r_c
- Sharp dropoff at large radius
 - Tidal disruption radius r_t
 - Region where other gravitational objects have stripped stars away



Conservation Laws with Clusters

- Clusters (especially globular clusters) *most* of the time have relatively little interaction with other objects
 - Conservation laws should hold within the cluster
- Though they have net momentum, we can ignore that
 - Work in center of mass frame of the cluster
- They usually were formed with little or no net angular momentum
 - Generally, this will just be conserved, so they stay that way
- Over the course of approximately one orbit, potential energy $\leftarrow \rightarrow$ kinetic energy
- Therefore, over time, the system will *virialize*

$$2E_K + E_P = 0$$

They then evolve due to two types of effects

- Close encounters of pairs of stars in the cluster
- Interaction of passing stars or other mass sources

Close Encounters of Pairs of Stars

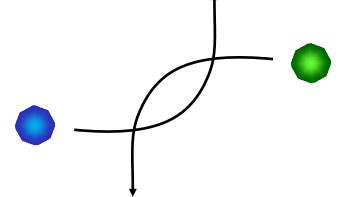
- When two stars pass near each other, they will alter each others' orbits
- This changes each star's momentum and energy, but not the total
- Over time, this allows transfer of energy between all the stars
- System ends up in a sort of thermal type distribution

$$P(E) \propto e^{-E/k_BT_d}$$

- Don't think of this dynamical "temperature" T_D too literally
- Does <u>not</u> correspond to the temperature of the stars themselves

 $E = E_{K} + E_{P} = \frac{1}{2}mv^{2} + m\Phi$

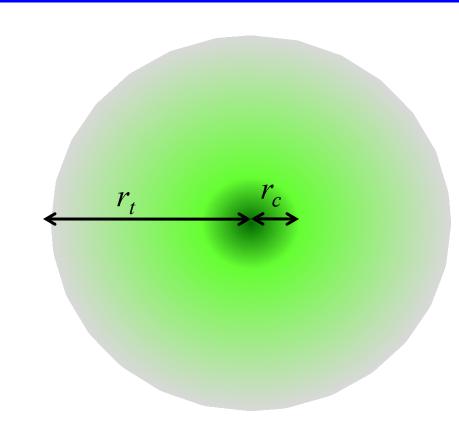
- Recall, energy is kinetic plus potential energy
- Note that *both* terms in the energy are proportional to mass
- The probability distribution prefers lower energy states
 - This effect has the most effect on high mass stars
- Therefore:
 - High mass stars tend to move at lower velocities
 - High mass stars tend to "fall" to the center of the cluster



Evolution of Cluster Shapes

Due to interactions between stars within the cluster:

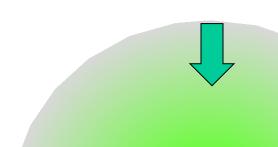
- Because the distribution depends only on energy, and this is the same in all directions, the cluster ends up as a sphere
- The more massive stars are gradually moving towards the center, and slowing down
- Less massive stars drift towards the edge
- Over time, the core radius r_c shrinks smaller and smaller
- Eventually r_c shrinks to zero
 - Many globular clusters seem to have already reached this stage
- The outer layer *should*, over time, expand and slowly evaporate off
 - But that's not what we see

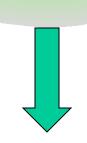


Effects of Passing Mass on a Cluster (1)

What effect does a passing mass have on a cluster?

- Typically, the passing mass is moving quickly past the cluster
- As it goes by, it pulls on the stars
- Net effect: The entire cluster accelerates in the direction of the passing star
 - But not evenly!
- We don't care about the net motion of the cluster
- But we do care about what effect is has on the stars in the cluster
- It pulls most strongly on the part of the cluster near it
- It pulls more weakly on the far part of the cluster
- It pulls diagonally on the parts to the side
- This means it is adding internal kinetic energy to the cluster





Effects of Passing Mass on a Cluster (2)

- The initial energy was negative
 - Can be easily seen from the total energy and the virial theorem

$$E = E_K + E_P$$

$$E_k = \frac{1}{2} |E_p|$$

- The total energy has increased
- Over one dynamical time scale, this energy will get distributed between the kinetic and potential energy according to the virial theorem
- The energy gets redistributed so that the kinetic and potential energy is shared
- The cluster gets larger and more loosely bound
- Stars near the outer edge eventually get completely stripped away
- This causes there to be a relatively sharp outer boundary
- If the cluster has insufficient mass, it will eventually be entirely disrupted

CAUTION!

- Many of the details about how galaxies form structure are not well understood
 - Much of our understanding comes from computer simulations, without detailed theories
- If an expert told you everything they knew, some of it would be wrong
- I am not an expert, and hence some of what I am going to tell you is *probably* wrong
- Take my comments as probably generally right, but probably wrong in details
- And it will doubtless need revision over time

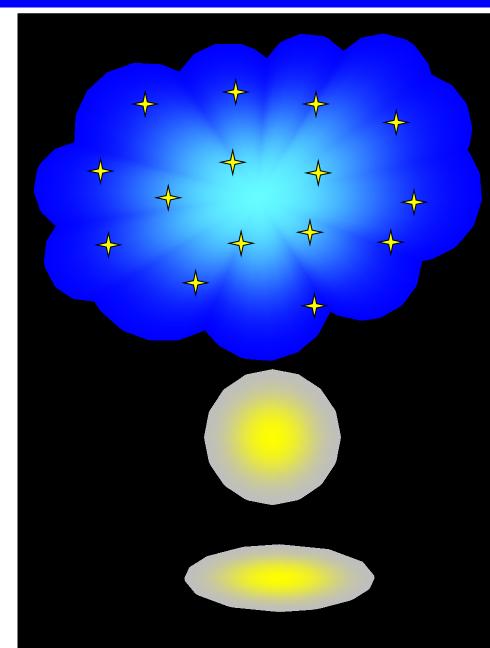
Shapes of Galaxies

Conservation Laws in Disks

- The stars in a disk are formed from gas and dust in the disk
 - We need to understand these objects to understand the stars in them
- Although a galaxy is moving, we are once again not interested in the *net* motion of the galaxy
 - Work in the center of mass frame of the galaxy
- Unlike stars, gas clouds are *huge* and frequently undergo collisions
- These collisions heat the gas
- The gas then starts to radiate the heat, which leaves the disk
- So we have Kinetic Energy → Heat → Radiation → Lost
- Effectively, energy is *not* conserved in the gas of the disk
- However, radiation carries off very little momentum
- And therefore, very little angular momentum
- Angular momentum *is* conserved in the disk

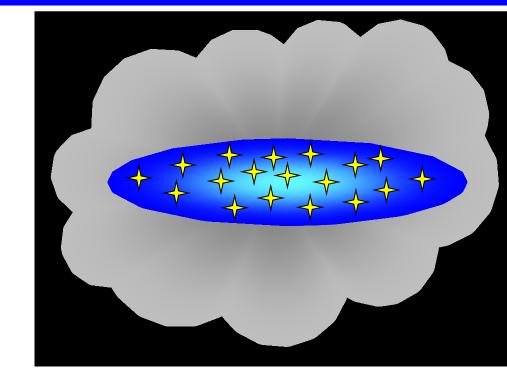
Early Star Formation In Galaxies

- All stars come initially from clouds of gas
- Initially, the clouds of gas can be any shape
- Stars form throughout the cloud
 - Initially probably having little motion
- Gravity pulls the stars towards the center
 - Converting gravitational energy to kinetic
- Ultimately, the system virializes
- If there is no net angular momentum, it will forma sphere
 - With stars having random motion in it
- If there is some net angular momentum, it will form an oblate sphere
 - Stars having some random motion
 - But more going in direction of rotation than counter to it
- These early stars may be the bulge stars



The Shapes of Disks

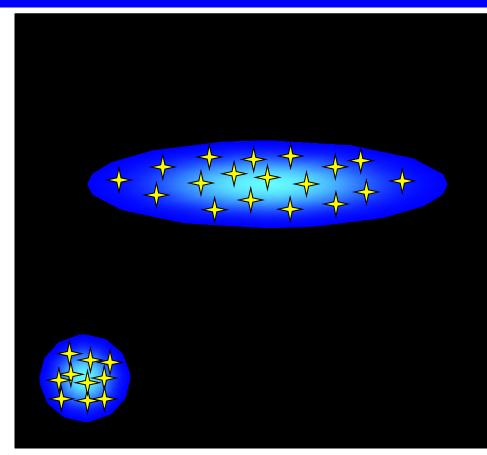
- The cloud of gas is also getting pulled together
- Because energy is not conserved in this cloud, it can shrink down a lot more
- It can't shrink to a point if it has angular momentum
- It will ultimately become a disk
- Only thing opposing it becoming infinitely thin is pressure



- The lowest temperature gas (molecular clouds) will make a very thin disk
- New stars will form in this disk
- Hence the youngest stars always form in the thinnest disk

Evolution of Shapes of Disks

- Passing galaxies and collisions with small galaxies will add kinetic energy to the remaining gas and stars
- This causes orbits to distort, no longer circular, and moving above and below the plane
- The gas ultimately loses this excess energy and goes back to being a disk
- But the disk of the stars thickens permanently
- The older parts of the disk will tend to be thicker than the younger parts



Instabilities in Disks and Bulges

- A perfectly symmetric ellipsoid should remain that way indefinitely
- But passing galaxies and other perturbations cause distortions
- In the bulge, there is an instability that makes the oblate ellipsoid become more elongated (cigar shaped)
- In the disk, there are instabilities that cause spiral arms to form
- Much of this information comes from computer simulations

