
• Particle Physics arises from the combination of special relativity and quantum mechanics

Particles are described by a list of properties:

• Mass, a positive number or zero, describing
the minimum energy of the particle
– Always given in metric multiples of eV/c2, like MeV/c2 and GeV/c2

• Spin, which describes the internal angular momentum of the particle
– Written as s, but we abbreviate this by just giving s, where s > 0
– s is always an integer (0,1,2,3,…) or half-integer (1/2,3/2,5/2,…)

• Electric charge, which is a multiple of the fundamental charge e
– We normally give just Q, and the charge is Qe
– Q is an integer.  It can be positive, negative, or zero

• Other properties exist, which we will discuss as they come up

( ) ( )222 2E pc mc= +


Particle Physics
The Basics



Fermions and Bosons
• Fermions are particles that obey the Pauli Exclusion Principle

– You can’t put two of the same kind in the same quantum state
– Fermions always have half-integer spin

• Bosons are particles that violate the Pauli Exclusion Principle
– They actually prefer being in the same quantum state
– Bosons always have integer spin

Some Particles (masses in MeV/c2)
Name   Sym. Spin Q Mass
Proton    p+    ½ +1 938.27
Neutron  n0   ½  0 939.57
Electron  e-  ½  -1 0.511
Neutrino  ν  ½  0  2×10-6

Photon     γ   1  0 0
Pi-plus    π+   0 +1 139.57
Pi-zero    π0   0  0 134.98
Pi-minus π-   0 -1 139.57
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Anti-Particles
• All particles have anti-

particles
• Anti-particles have the

same mass and spin,
but opposite charge

• Usually named by prefixing with “anti-”
• Some particles are their own anti-particles

Spin Q Mass
  ½  –1 938.27
  ½  0 939.57
  ½  +1 0.511
  ½  0  2×10-6

  1  0 0
  0  –1 139.57
  0  0 134.98
  0 +1 139.57

For each of the particles below
• What is the spin, charge, and mass of the anti-particle
• Which might be their own anti-particles?
• Which might be anti-particles of each other?

Name   Sym. Spin Q Mass
Proton    p+    ½ +1 938.27
Neutron  n0   ½  0 939.57
Electron  e-   ½  –1 0.511
Neutrino  ν   ½  0  2×10-6

Photon     γ   1  0 0
Pi-plus    π+   0 +1 139.57
Pi-zero    π0   0  0 134.98
Pi-minus π-   0  –1 139.57

anti

pair



• Energy and Momentum are conserved
• We’ll use only energy conservation

• Consider a frame where the initial proton is at rest

p+ p+ + π0

2
i p pE E m c= = f pE E Eπ′= + 2

pm c>2 2
pm c m cπ≥ +

• Is the following interaction possible?

p+ + n0 p+ + n0 + π+ + π–  

• Energy doesn’t preclude it because the particles on the left can have kinetic energy in addition to their 
rest energy
– There is not necessarily any frame

where these particles are at rest
For decays only: Mass of initial particle must 

exceed sum of masses of final particles

Conservation Laws
Energy and Momentum

• Energy
• Momentum
• Angular Momentum
• Electric Charge
• Baryon Number
• Strangeness



• Total angular momentum is conserved 

• Consider angular momentum around z-axis

p+ +n0 e-

nz nz pz pz ez ezL S L S L S+ = + + +

• All of the orbital angular momenta (L’s) are integer
multiples of 

• Because the neutron, proton and electron are all fermions, the internal angular momenta (S’s) are 
all half-integer multiples of 

1 1 1
1 2 32 2 2n n n± = ± + ±     

1 1 1
1 2 32 2 2n n n± = ± + ±

• Right side is an integer, left side is not

Total number of fermions (particles with half-
integer spin) on left plus right must be even

Angular Momentum
• Energy
• Momentum
• Angular Momentum
• Electric Charge
• Baryon Number
• Strangeness



Electric Charge
• Electric charge is conserved

?e-

• By energy conservation, whatever is on the right must be lighter

• By charge conservation, something on the right must be charged

• No such particle exists, so electron is stable

Charge is 
conserved

Why is the electron stable?

• Energy
• Momentum
• Angular Momentum
• Electric Charge
• Baryon Number
• Strangeness



Baryon Number
• Consider nuclear reactions

– β– decay: (Z,A)  (Z+1,A)
– β+ decay: (Z,A)  (Z–1,A)
– α decay: (Z,A)  (Z–2,A-4) + (2,4)
– γ decay: (Z,A)*  (Z,A)

• Total protons plus neutrons (call
this baryons) remains constant?

• Maybe anti-protons count as negative baryons?
+ +p+ p- γ γ

p+ n0+ p+ + ∆++

• Maybe there are other particles that count as baryons too?

• There are a group of particles called baryons
– They each have baryon number +1

• For every baryon, there is an anti-baryon
– They each have baryon number –1

Baryon number 
is conserved

Why is the proton stable?

• There is no lighter baryon

• Energy
• Momentum
• Angular Momentum
• Electric Charge
• Baryon Number
• Strangeness



Baryons, Anti-Baryons, and Mesons
• The strong nuclear force is what holds the nucleus together

– It is must be strong and fast to do so
• Some particles (photon, electron, neutrino) do not seem to be affected by it

The particles that feel strong forces come in three categories:
• Baryons have baryon number +1
• Anti-baryons are their anti-particles and have baryon number –1
• Mesons have baryon number 0

– Anti-mesons are mesons

Reactions that occur very quickly are believed to be mediated by this strong force
• The rho-mesons, for example, decay very fast

 ρ+ +π+ π0 244 10  st −≈ ×

• The kaons, by comparison, decay very slowly

A strong interaction

+K+ π+ π0
81.24 10  st −≈ × A weak interaction



Strangeness
• Why do some reactions involving strongly interacting 

particles occur so slowly?

• It was speculated that some baryons and mesons had a 
property called strangeness that also had to be violated 
only in weak interactions

Strangeness is conserved 
in all interactions except 

weak interactions Symbol  S
ρ+, ρ0, ρ-  0
π+, π0, π-  0
K+, K0  +1
K-, K0  -1
p+, n0  0
Σ+, Σ0, Σ- -1
Λ0  -1
Ξ0, Ξ-  -2

Important notes:

• Strangeness only applies to strongly interacting particles; other particles 
have S = 0

• Strangeness can only be changed by weak interactions

• The strangeness of an anti-particle is the opposite of the strangeness of 
the particle

• Energy
• Momentum
• Angular Momentum
• Electric Charge
• Baryon Number
• Strangeness



Types of Interactions
THE STRONG FORCE
• Involves only strongly interacting particles: baryons, anti-baryons, and mesons
• Conserves strangeness

ELECTROMAGNETISM
• Affects all charged particles
• Always involves photons (though this isn’t always obvious)

THE WEAK FORCE
• Affects essentially all particles except photons
• The only force that affects neutrinos
• The only force that violates strangeness

Which force is at work in a given reaction?
• The stronger a force is, the more likely it is to be at work

– Strong > Electromagnetism > Weak

e- + e+ µ- + µ+

e-

e+
µ-µ+γ



Which Force?
A step-by-step procedure for determining which force is at work

• If charge conservation is violated   Impossible

• Else if baryon number is violated   Impossible

• Else if odd # fermions (left + right)   Impossible

• Else if decay and insufficient energy   Impossible

• Else if strangeness violated    Weak

• Else if all particles are strong    Strong

• Else if neutrinos are involved    Weak

• Else       Electromagnetism



Classify the 
reactions below:

p+ + K-  Ξ0 + K0

Σ0  Λ0 + e+ + e-

n0  p- + e+

(the n0 and the p- are the anti-
particles of the neutron and 
proton)

• Charge: (+1) + (-1) = 0 + 0 
• Baryons: (+1) + 0 = (+1) + 0 
• Fermions: [1+0] + [1+0] = 2 = even 
• Not a decay 
• Strangeness: 0 + (-1) = (-2) + (+1) 
• All particles are strong Strong

• Charge: 0 = 0 + (+1) + (-1) 
• Baryons: (+1) = (+1) + 0 + 0 
• Fermions: [1] + [1+1+1] = 4 = even 
• Energy: 1193 > 1116 + 0.5 + 0.5 
• Strangeness: 1 = 1 + 0 + 0 
• All particles are strong 
• Neutrinos are involved 

Electromagnetism

• Charge: 0 = (-1) + (+1) 
• Baryons: (-1) = (-1) + 0 
• Fermions: [1] + [1+1] = 3 = odd  Impossible

Sample Problems



• In the 50’s and 60’s, the number of baryons and mesons was growing out 
of control
– There are currently hundreds known

• In 1961, Murray Gell-Mann noticed a series of mathematical relationships 
between the various particles

π+

Y = S + B

I3 = Q + ½Y
π–

K+K0

K0K–

η0π0

Spin-0 
Mesons

Σ+

Y = S + B

I3 = Q + ½Y
Σ–

p+n0

Ξ0Ξ–

Λ0Σ0

Spin-½  
Baryons

The Standard Model
Patterns in Baryons and Mesons



• In 1962, based on the patterns, Gell-Mann predicted 
a new particle, the Ω-

Quarks

Σ*+

Y = S + B

I3 = Q + ½Y
Σ*–

∆+∆0

Ξ*0Ξ*–

Σ*0

Spin-3/2  
Baryons

∆–  ∆++

Ω–

• In 1964, Gell-Mann and George Zweig 
independently proposed that all these particles could 
be explained if there were underlying particles called 
quarks
– There were three of them, and in baryons,

they always come in threes

• There are also anti-quarks for every
quark

Quark Spin charge S
      Up    ½ +2/3 0
      Down   ½ –1/3 0
      Strange   ½ –1/3 –1

u
d
s

anti-Quark Spin charge S
      anti-Up   ½ –2/3 0
      anti-Down   ½ +1/3 0
      anti-Strange   ½ +1/3 +1

u
d
s



• To make a baryon, combine three quarks
• To make an anti-baryon, combine three anti-quarks
• To make a meson, combine a quark and an anti-quark

Baryons and Mesons from Quarks

Quark Spin charge S
      Up    ½ +2/3 0
      Down   ½ –1/3 0
      Strange   ½  – /3 –1

u
d
s

• Composition can generally be determined from 
strangeness and charge

What is a proton made from?

• It is a baryon: three quarks
• It has strangeness 0, so no strange quarks
• It has charge +1, so to get this, must take:

2 2 1
3 3 3 1+ + − = +

What is a K+ made from?

p+ = [uud]
• It is a meson: quark + anti-quark
• It has strangeness +1, so must have an anti-strange 

quark
• To get charge +1, the other quark must have 

charge +2/3 ( )1 2
3 3 1− − + = +

K+ = [us]
u

d u
u s



• Can we “predict” which baryons and mesons are lightest 
from the quark model?

• How about, say, the ∆++?
– Spin 3/2, three up quarks

• Seems to violate Pauli principle
• Some people abandoned the quark model, others, in 

desperation, dreamed up color

The Problem with Quarks

Up Down Strange

Color
• Maybe there is another property, call it color, that describes an 

individual quark
• Need three colors: typically called red, green, and blue
• Every type of quark comes in three colors
• You must always combine quarks in colorless combinations
• Anti-quarks come in anti-red, anti-green, and anti-blue
• Everything worked fine, but looked awfully arbitrary

u u u

d d d

s s s

u u u

d d d

s s s



• Where does the arbitrary rule, “make it colorless” come from? 
• Consider, by analogy, atoms:

– Electrons and nuclei have a property called “charge”
– However, atoms are almost always neutral, they are “charge-free”

• This is because there is a force (electromagnetism) mediated by a particle (the photon) that prefers 
when charges cancel out

The Secret of the Strong Force

• Maybe color is associated with a new force that also prefers colorless combinations

u

u
d

• Particles called “gluons” carry the real strong force back and forth between the three quarks in a 
baryon or quark and anti-quark in a meson

ug

u



• The real strong force is this force between quarks, mediated by gluons
– There are eight different gluons in all (don’t worry about it)

• The force we have been calling the “strong” force is just a weaker version of it
– Analogy – nuclear force : strong force :: chemistry : electric force

More About the Strong Force

• All calculations are very difficult involving the strong force
– “Perturbation theory,” the usual technique, fails

• A few conclusions have been drawn from the theory
– Quark confinement – quarks never escape
– The force gets weaker – slowly – at very high energies
– Only colorless combinations – baryons, mesons, anti-baryons – are possible
– The type of quark – like strange quarks – weren’t changed; this is why strangeness is conserved

• With the advent of modern supercomputers, we are getting good match of theory and experiment



• The electromagnetic force was the first to be described quantum mechanically
– Quantum Electrodynamics (QED) is the most accurately tested theory, ever

Two Down, One to Go

• The strong force was successfully described in terms of colors and gluons
– Quantum Chromodynamics (QCD) is now pretty well tested

u

e-

γ

u

d

u

d

g

• The weak force was still being worked on
– Actually, much of this work was simultaneous with strong force



W-

Clues to the Weak Force
• The weak force changed the nature of particles in a more fundamental way than did the strong or the 

electromagnetic force
• It had a very short range, which is why it was so weak
• It was guessed it also involved exchange of a particle

– Called the W±, it was apparently very massive
– It changed particles into ones with different identities

p+

e- νe

n0

• Weak interactions changed the electron into an electron neutrino
– This worked fine
– These two particles were called leptons

• Another pair of leptons had also been discovered
– The muon and muon neutrino were two more leptons
– Just like the electron, but heavier



W-

The Electroweak Theory
• During the 1960’s, the modern electroweak theory was developed

– It is a partial unification of the electromagnetic and weak forces
•  In 1960 Sheldon Glashow proposed that the theory could be understood if there were also another 

neutral massive particle called the Z

W+

Z0γ
• There were theoretical problems with this approach

– The W’s and Z’s were not massless like the photon
– The W’s were connecting particles of different masses

• In 1967, Steven Weinberg and Abdus Salam independently proposed a solution 
to these problems

• The mass of the W and the Z, as well as all 
the quarks and leptons, had to come from a 
background field that pervades the universe, 
now called the Higgs field

H0



Weak Interactions in the Quark Sector
• In the leptons, we had two charged leptons and two neutrinos
• Emission or absorption of a W± could convert them back and forth

e- νe

 µ- νµ

• In the quarks, we had three quarks 
• Emission or absorption of a W± could convert them back and forth, but not equally
• The Z particle should also cause transitions that don’t change the charge

– This should cause d  s transitions
– But they weren’t observed

• In 1970, Glashow, Iliopoulos and Maiani found a solution
– They had to assume there was a fourth quark, called charm

• In 1974, the charmed quark was discovered by Richter and Ting

ud

s c



The List Grows . . . But Not Forever
• In 1975, a new lepton was discovered, named the τ

– It is just like the electron and muon, only heavier

e- νe

 µ- νµ

ud

s c

 τ- ντ b t

• There was associated evidence 
for a new neutrino
– Finally proven in 2001

• Complicated arguments  suggested it was likely there was another pair of 
quarks, too
– Bottom quark (originally beauty) discovered in 1977
– Top quark (originally truth) discovered in 1995

• Around 1989, measurements of the Z established that there were 
no new neutrinos
– We now think this means we didn’t miss anything



All Standard Model Particles
Particle  symbols spin charge Mass (MeV/c2)
Electron  e- ½ -1 0.511
Neutrino 1 ν1 ½  0 0?
Muon  µ- ½ -1 105.7
Neutrino 2 ν2 ½ 0 9×10–9 ? 

Tau  τ-
µ ½ -1 1777

Neutrino 3 ν3 ½ 0 5×10–8 ? 

Up quark uuu ½ +2/3 3
Down quark ddd ½ -1/3 5
Charm quark ccc ½ +2/3 1,300
Strange quark sss ½ -1/3 120
Top quark ttt ½ +2/3 174,200
Bottom quark bbb ½ -1/3 4,300

Photon  γ 1 0 0
Gluon         gggggggg 1 0 0
W-boson W± 1 ±1 80,400
Z-boson  Z0 1 0 91,188

Higgs  H 0 0 125,100
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All Standard Model Particles

u u u

d d d

u u u

d d de-

ν1

e+

ν1First 
Generation

Spin ½ Particles Spin ½ 
Anti-Particles

Spin 1
Force Carriers

c c c

s s s

c c c

s s sµ-

ν2

µ +
ν2Second 

Generation

t t t

b b b

t t t

b b bτ-

ν3

τ +
ν3Third 

Generation

W- W+

Z0γ

H0

g g g

g g g

g

g

Spin 0 Higgs



The Standard Model Lagrangian:

What part of

don’t you understand?

 

( ) ( )1 1 1 1
4 4 2 4

2 2
2 2 2 21 1 1

2 2 2

1

1 1
2

a a
f f f

f

W Z H

HF F Z Z W W G G i D m
v

H Hm W W m Z Z H H m H
v v

     
    

  
  

   

 

               

                   





What’s Missing?

e- νe

 µ- νµ

 τ- ντ

• There are 18 numbers in this theory that must be put in by hand
– 9 quark and lepton masses
– 3 strengths of the forces (strong, weak, electromagnetic)
– 4 describing the mixings in weak interactions
– 2 describe the mass and strength of the Higgs field

• The Higgs particle: discovery announced July 4, 2012 H0

• The three neutrinos are massless in the standard model
– Experimental evidence for masses and mixing

• It is easy to fix this – too easy

Gravity



Outline of History of Universe
Time    T or kBT Events
10-43 s    1018 GeV Planck Era; time becomes meaningless?
10-39 s    1016 GeV Inflation begins; forces unified
10-35 s    1015 GeV Inflation ends; reheating; forces separate; baryosynthesis (?)

10-13 s    1500 GeV Supersymmetry breaking, LSP (dark matter)
10-11 s    160 GeV Electroweak symmetry breaking

14 µs    150 MeV Quark Confinement

0.4 s    1.5 MeV Neutrino Decoupling
1.5 s    0.7 MeV Neutron/Proton freezeout
20 s    170 keV Electron/Positron annihilation
200 s    80 keV Nucleosynthesis

57 ky    0.76 eV Matter-Radiation equality
370 ky    0.26 eV Recombination
600 My     30 K  First Structure/First Stars
13.8 Gy     2.725 K Today

Known Particle Physics



More Particles Become Relevant
• At temperatures of 0.2 – 30 MeV, photons, neutrinos, and electrons (and their anti-

particles) are effectively massless, and appear in high numbers

• Above 35 – 50 MeV (~0.3 ms) the muons and pions are relevant

• The pions are strongly interacting, and start to affect how all strongly interacting 
particles appear

• Theory says that the strong force becomes weaker at higher energy

• At 150 MeV quarks shift from being trapped in baryons and mesons to being free
• Universe is filled with “quark soup”

The Era of Particle Physics



Quark Confinement

u
ud

2

eff

2.42 s MeV
g B

t
k T

 
=  

 

22.42 s MeV
150 MeV61.75

 =  
 

51.4 10  s−= ×
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• At low temperatures (< 40 MeV) just an occasional baryon

• At 45 MeV, pions start to appear
• At 150 MeV, the pions are so thick that they start 

overlapping with each other
• Quarks can jump from one pion to the next

• Strong force gets weaker at higher energy
• Effectively confinement doesn’t apply

• Quarks go from free to confined at 150 MeV

• At this temperature there are up, down, and strange quarks, 
and gluons

• In addition to the photons, neutrinos, electrons, and muons

Time    T or kBT Events
14 µs    150 MeV Quark Confinement



Particles in the Early Universe
Particle  symbols spin g mc2 (MeV)
Electron  e ½ 4 0.511
Neutrino 1 ν1 ½ 2 ~0
Up quark uuu ½ 12 ~5
Down quark ddd ½ 12 ~10
Muon  µ ½ 4 105.7
Neutrino 2 ν2 ½ 2 ~0
Charm quark ccc ½ 12 1,270
Strange quark sss ½ 12 ~100
Tau  τ ½ 4 1,777
Neutrino 3 ν3 ½ 2 ~0
Top quark ttt ½ 12 173,000
Bottom quark bbb ½ 12 4,700

Photon  γ 1 2 0
Gluon        gggggggg 1 16 0
W-boson W 1 6 80,400
Z-boson  Z 1 3 91,200

Higgs  H 0 1 125,100

• For kBT < 150 MeV, quarks are bound 
and it’s complicated

• Above 150 MeV, all particles are in 
thermal equilibrium

• As temperature rises, particles get 
included when 3kBT > mc2

• For 150 – 400 MeV, include e, µ, u, d, 
s,ν1, ν2, ν3, γ, and g

• At 400 MeV, add c; at 600 add τ
• At 1.5 GeV add b
• At 30 GeV, add W and Z
• At 40 GeV, add H; at 60 add t
• Above 60 GeV, we have

7
eff 8b fg g g= +

( )7
eff 828 90 106.75g = + =



Electroweak Phase Transition
• There are three forces that particle physicists understand:

• Strong, electromagnetic, and weak
• Electromagnetic and weak forces affected by a field called the Higgs field
• The shape of the Higgs potential is interesting:

• Sometimes called a Mexican Hat potential

• At low temperatures (us), one direction is easy to move (EM forces) 
and one is very hard (weak forces)

• At high temperatures, (early universe) you naturally move to the 
middle of the potential

• All directions are created equal
• Electroweak unification becomes apparent at perhaps kBT = 160 GeV

2

eff

2.42 s MeV
g B

t
k T

 
=  

 

22.42 s MeV
160,000 MeV106.75

 
=  

 
1110  s−≈

Time    T or kBT Events
10–11 s    160 GeV Electroweak Symmetry Breaking



Outline of History of Universe
Time    T or kBT Events
10-43 s    1018 GeV Planck Era; time becomes meaningless?
10-39 s    1016 GeV Inflation begins; forces unified
10-35 s    1015 GeV Inflation ends; reheating; forces separate; baryosynthesis (?)

10-13 s    1500 GeV Supersymmetry breaking, LSP (dark matter)
10-11 s    160 GeV Electroweak symmetry breaking

14 µs    150 MeV Quark Confinement

0.4 s    1.5 MeV Neutrino Decoupling
1.5 s    0.7 MeV Neutron/Proton freezeout
20 s    170 keV Electron/Positron annihilation
200 s    80 keV Nucleosynthesis

57 ky    0.76 eV Matter-Radiation equality
370 ky    0.26 eV Recombination
600 My     30 K  First Structure/First Stars
13.8 Gy     2.725 K Today

Unknown Particle Physics
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