Particle Physics The Basics

 $E^2 = (\vec{p}c)^2 + (mc^2)^2$

• Particle Physics arises from the combination of special relativity and quantum mechanics

Particles are described by a list of properties:

- Mass, a positive number or zero, describing the minimum energy of the particle
 - Always given in metric multiples of eV/c^2 , like MeV/c^2 and GeV/c^2
- Spin, which describes the internal angular momentum of the particle
 - Written as $s\hbar$, but we abbreviate this by just giving s, where s > 0
 - s is always an integer (0,1,2,3,...) or half-integer (1/2,3/2,5/2,...)
- Electric charge, which is a multiple of the fundamental charge *e*
 - We normally give just Q, and the charge is Qe
 - Q is an integer. It can be positive, negative, or zero
- Other properties exist, which we will discuss as they come up

Fermions and Bosons

- Fermions are particles that obey the Pauli Exclusion Principle
 - You can't put two of the same kind in the same quantum state
 - Fermions always have half-integer spin
- Bosons are particles that violate the Pauli Exclusion Principle
 - They actually *prefer* being in the same quantum state
 - Bosons always have integer spin

	2	Some Pa	articles	(masses	$s in MeV/c^2$
	<u>Name</u>	Sym.	<u>Spin</u>	<u> </u>	Mass
S	Proton	p^+	$\frac{1}{2}$	+1	938.27
Fermions	Neutron	n^0	$\frac{1}{2}$	0	939.57
	Electron	e-	$\frac{1}{2}$	-1	0.511
Fe	Neutrino	ν	$\frac{1}{2}$	0	$\lesssim 2 \times 10^{-6}$
S	Photon	γ	1	0	0
Bosons	Pi-plus	π^+	0	+1	139.57
308	Pi-zero	π^0	0	0	134.98
	Pi-minus	$\pi^{\scriptscriptstyle{-}}$	0	-1	139.57

Anti-Particles

- All particles have antiparticles
- Anti-particles have the same mass and spin, but opposite charge
- For each of the particles below
- What is the spin, charge, and mass of the anti-particle
- Which might be their own anti-particles?
- Which might be anti-particles of each other?
- Usually named by prefixing with "anti-"
- Some particles are their own anti-particles

Name	Sym.	<u>Spin</u>	<u>O</u>	Mass
Proton	p^+	$\frac{1}{2}$	+1	938.27
Neutron	n^0	$\frac{1}{2}$	0	939.57
Electron	e-	$\frac{1}{2}$	-1	0.511
Neutrino	ν	$\frac{1}{2}$	0	$\lesssim 2 \times 10^{-6}$
Photon	γ	1	0	0
Pi-plus	π^+	0	+1	139.57
Pi-zero	π^0	0	0	134.98
Pi-minus	π^{-}	0	-1	139.57

<u>Spin</u>	<u>Q</u>	<u>Mass</u>	
$\frac{1}{2}$	-1	938.27	
$\frac{1}{2}$	0	939.57	
1/2	+1	0.511	
$\frac{1}{2}$	0	$\lesssim 2 \times 10^{-6}$	
1	0	0	
0	-1	139.57	ant
0	0	134.98	
0	+1	139.57	pai

Conservation Laws

Energy and Momentum

- Energy and Momentum are conserved
- We'll use only energy conservation

Consider a frame where the initial proton is at rest

$$E_i = E_p = m_p c^2$$

$$E_i = E_p = m_p c^2$$
 $E_f = E'_p + E_\pi \ge m_p c^2 + m_\pi c^2 > m_p c^2$

- Energy
- Momentum
- Angular Momentum
- Electric Charge
- Baryon Number
- Strangeness

Is the following interaction possible?

 There is not necessarily any frame where these particles are at rest

For decays only: Mass of initial particle must exceed sum of masses of final particles

Angular Momentum

Total angular momentum is conserved

• Consider angular momentum around *z*-axis

$$L_{nz} + S_{nz} = L_{pz} + S_{pz} + L_{ez} + S_{ez}$$

- All of the orbital angular momenta (L's) are integer multiples of \hbar
- Because the neutron, proton and electron are all fermions, the internal angular momenta (S's) are all half-integer multiples of \hbar

$$n_1 \hbar \pm \frac{1}{2} \hbar = n_2 \hbar \pm \frac{1}{2} \hbar + n_3 \hbar \pm \frac{1}{2} \hbar$$

$$n_1 \pm \frac{1}{2} = n_2 \pm \frac{1}{2} + n_3 \pm \frac{1}{2}$$

• Right side is an integer, left side is not

- Energy
- Momentum
- Angular Momentum
- Electric Charge
- Baryon Number
- Strangeness

Total number of fermions (particles with half-integer spin) on left plus right must be even

Electric Charge

Electric charge is conserved

Charge is conserved

Why is the electron stable?

?

- By energy conservation, whatever is on the right must be lighter
- By charge conservation, something on the right must be charged
- No such particle exists, so electron is stable

- Energy
- Momentum
- Angular Momentum
- Electric Charge
- Baryon Number
- Strangeness

Baryon Number

- Consider nuclear reactions
 - $-\beta^{-}$ decay: $(Z,A) \rightarrow (Z+1,A)$
 - $-\beta^+$ decay: $(Z,A) \rightarrow (Z-1,A)$
 - α decay: $(Z,A) \rightarrow (Z-2,A-4) + (2,4)$
 - γ decay: (Z,A)* → (Z,A)
- Total protons plus neutrons (call this baryons) remains constant?

 $p^+ + \overline{p} \longrightarrow p + p$

- Energy
- Momentum
- Angular Momentum
- Electric Charge
- Baryon Number
- Strangeness

Maybe anti-protons count as negative baryons?

- Maybe there are other particles that count as baryons too?
- There are a group of particles called *baryons*
 - They each have baryon number +1
- For every baryon, there is an anti-baryon
 - They each have baryon number −1

Baryon number is conserved

Why is the proton stable?

• There is no lighter baryon

Baryons, Anti-Baryons, and Mesons

- The strong nuclear force is what holds the nucleus together
 - It is must be strong and fast to do so
- Some particles (photon, electron, neutrino) do not seem to be affected by it

The particles that feel strong forces come in three categories:

- Baryons have baryon number +1
- *Anti-baryons* are their anti-particles and have baryon number –1
- Mesons have baryon number 0
 - Anti-mesons are mesons

Reactions that occur very quickly are believed to be mediated by this strong force

The rho-mesons, for example, decay very fast

$$t \approx 4 \times 10^{-24} \text{ s}$$

A strong interaction

The kaons, by comparison, decay very slowly

$$t \approx 1.24 \times 10^{-8} \text{ s}$$

A weak interaction

Strangeness

- Why do some reactions involving strongly interacting particles occur so slowly?
- It was speculated that some baryons and mesons had a property called *strangeness* that also had to be violated only in weak interactions

Strangeness is conserved in all interactions except weak interactions

Important notes:

- Strangeness *only* applies to strongly interacting particles; other particles have S = 0
- Strangeness can *only* be changed by weak interactions
- The strangeness of an anti-particle is the opposite of the strangeness of the particle

•	Energy
---	--------

- Momentum
- Angular Momentum
- Electric Charge
- Baryon Number
- Strangeness

Symbol	<u>S</u>
$ ho^+, ho^0, ho^-$	0
π^+,π^0,π^-	0
K^+, K^0	+1
$K^{-}, \overline{K^{0}}$	-1
p^{+}, n^{0}	0
$\Sigma^+,\Sigma^0,\Sigma^-$	-1
Λ^0	-1
Ξ^0,Ξ^-	-2

Types of Interactions

THE STRONG FORCE

- Involves only strongly interacting particles: baryons, anti-baryons, and mesons
- Conserves strangeness

ELECTROMAGNETISM

Affects all charged particles

• Always involves photons (though this isn't always obvious)

THE WEAK FORCE

- Affects essentially all particles except photons
- The only force that affects neutrinos
- The only force that violates strangeness

Which force is at work in a given reaction?

- The stronger a force is, the more likely it is to be at work
 - Strong > Electromagnetism > Weak

Which Force?

A step-by-step procedure for determining which force is at work

• If charge conservation is violated → Impossible

• Else if baryon number is violated → Impossible

• Else if odd # fermions (left + right) → Impossible

• Else if decay <u>and</u> insufficient energy → Impossible

• Else if strangeness violated → Weak

• Else if all particles are strong → Strong

• Else if neutrinos are involved → Weak

• Else → Electromagnetism

Sample Problems

Classify the reactions below:

$$p^+ + K^- \rightarrow \Xi^0 + K^0$$

Strong

$$\Sigma^0 \rightarrow \Lambda^0 + e^+ + e^-$$

Electromagnetism

$$\overline{n}^0 \rightarrow \overline{p}^- + e^+$$

(the $\overline{n^0}$ and the $\overline{p^-}$ are the antiparticles of the neutron and proton)

- Charge: $(+1) + (-1) = 0 + 0 \ \square$
- Baryons: $(+1) + 0 = (+1) + 0 \ \square$
- Fermions: $[1+0] + [1+0] = 2 = \text{even } \square$
- Strangeness: $0 + (-1) = (-2) + (+1) \square$
- All particles are strong **☑**
- Charge: $0 = 0 + (+1) + (-1) \ \Box$
- Baryons: $(+1) = (+1) + 0 + 0 \ \Box$
- Fermions: $[1] + [1+1+1] = 4 = \text{even } \square$
- Energy: $1193 > 1116 + 0.5 + 0.5 \square$
- Strangeness: $1 = 1 + 0 + 0 \ \Box$
- All particles are strong
- Neutrinos are involved

• Charge:
$$0 = (-1) + (+1) \ \Box$$

- Baryons: $(-1) = (-1) + 0 \ \Box$
- Fermions: $[1] + [1+1] = 3 = \text{odd} \ \blacksquare$

Impossible

The Standard Model

Patterns in Baryons and Mesons

- In the 50's and 60's, the number of baryons and mesons was growing out of control
 - There are currently hundreds known
- In 1961, Murray Gell-Mann noticed a series of mathematical relationships between the various particles

Quarks

- In 1962, based on the patterns, Gell-Mann predicted a new particle, the Ω
- In 1964, Gell-Mann and George Zweig independently proposed that all these particles could be explained if there were underlying particles called *quarks*
 - There were three of them, and in baryons,
 they always come in threes
- There are also anti-quarks for every quark

<u>Quark</u>	<u>Spin</u>	<u>charge</u>	<u>S</u>
u Up	$\frac{1}{2}$	+2/3	0
d Down	$\frac{1}{2}$	-1/3	0
Strange	1/2	-1/3	-1

	Y =	S + B	
Δ-	Δ^0	Δ+	Δ++
\leftarrow Σ	*-	*0 Σ	$I_3 = Q + \frac{1}{2}Y$
	Ξ*-	E *0	Spin-3/2 Baryons
	2		

	<u>anti-Quark</u>	<u>Spin</u>	<u>charge</u>	<u>S</u>
U	anti-Up	$\frac{1}{2}$	-2/3	0
d	anti-Down	$\frac{1}{2}$	+1/3	0
$\widehat{\mathbf{S}}$	anti-Strange	1/2	+1/3	+1

Baryons and Mesons from Quarks

- To make a baryon, combine three quarks
- To make an anti-baryon, combine three anti-quarks
- To make a meson, combine a quark and an anti-quark
- Composition can generally be determined from strangeness and charge

What is a proton made from?

- It is a baryon: three quarks
- It has strangeness 0, so no strange quarks
- It has charge +1, so to get this, must take:

$$+\frac{2}{3}+\frac{2}{3}-\frac{1}{3}=+1$$

$$p^+ = [uud]$$

<u>Quark</u>	<u>Spin</u>	<u>charge</u>	<u>S</u>
U Up	1/2	+2/3	0
d Down	1/2	-1/3	0
Strange	1/2	-/3	-1

What is a K⁺ made from?

- It is a meson: quark + anti-quark
- It has strangeness +1, so must have an anti-strange quark
- To get charge +1, the other quark must have charge +2/3 $-\left(-\frac{1}{3}\right) + \frac{2}{3} = +1$

The Problem with Quarks

- Can we "predict" which baryons and mesons are lightest from the quark model?
- How about, say, the Δ^{++} ?
 - Spin 3/2, three up quarks
- Seems to violate Pauli principle
- Some people abandoned the quark model, others, in desperation, dreamed up color

Color

- Maybe there is another property, call it color, that describes an individual quark
- Need three colors: typically called red, green, and blue
- Every type of quark comes in three colors
- You must always combine quarks in colorless combinations
- Anti-quarks come in anti-red, anti-green, and anti-blue
- Everything worked fine, but looked awfully arbitrary

The Secret of the Strong Force

- Where does the arbitrary rule, "make it colorless" come from?
- Consider, by analogy, atoms:
 - Electrons and nuclei have a property called "charge"
 - However, atoms are almost always neutral, they are "charge-free"
- This is because there is a force (electromagnetism) mediated by a particle (the photon) that prefers when charges cancel out
 - Maybe color is associated with a new force that also prefers colorless combinations

• Particles called "gluons" carry the real strong force back and forth between the three quarks in a baryon or quark and anti-quark in a meson

More About the Strong Force

- The real strong force is this force between quarks, mediated by gluons
 - There are eight different gluons in all (don't worry about it)
- The force we have been calling the "strong" force is just a weaker version of it
 - Analogy nuclear force : strong force :: chemistry : electric force
- All calculations are <u>very difficult</u> involving the strong force
 - "Perturbation theory," the usual technique, fails
- A few conclusions have been drawn from the theory
 - Quark confinement quarks never escape
 - The force gets weaker − slowly − at very high energies
 - Only colorless combinations baryons, mesons, anti-baryons are possible
 - The type of quark like strange quarks weren't changed; this is why strangeness is conserved

• With the advent of modern supercomputers, we are getting good match of theory and experiment

Two Down, One to Go

- The <u>electromagnetic force</u> was the first to be described quantum mechanically
 - Quantum Electrodynamics (QED) is the most accurately tested theory, ever

- The **strong force** was successfully described in terms of colors and gluons
 - Quantum Chromodynamics (QCD) is now pretty well tested

- The weak force was still being worked on
 - Actually, much of this work was simultaneous with strong force

Clues to the Weak Force

- The <u>weak force</u> changed the nature of particles in a more fundamental way than did the strong or the electromagnetic force
- It had a very short range, which is why it was so weak
- It was guessed it also involved exchange of a particle
 - Called the W[±], it was apparently <u>very</u> massive
 - It changed particles into ones with different identities

- Weak interactions changed the electron into an electron neutrino
 - This worked fine
 - These two particles were called leptons
- Another pair of leptons had also been discovered
 - The muon and muon neutrino were two more leptons
 - Just like the electron, but heavier

The Electroweak Theory

- During the 1960's, the modern electroweak theory was developed
 - It is a partial unification of the electromagnetic and weak forces
- In 1960 Sheldon Glashow proposed that the theory could be understood if there were also another neutral massive particle called the Z
- There were theoretical problems with this approach
 - The W's and Z's were not massless like the photon
 - The W's were connecting particles of different masses
- In 1967, Steven Weinberg and Abdus Salam independently proposed a solution to these problems
- The mass of the W and the Z, as well as all the quarks and leptons, had to come from a background field that pervades the universe, now called the Higgs field

Weak Interactions in the Quark Sector

- In the leptons, we had two charged leptons and two neutrinos
- Emission or absorption of a W^{\pm} could convert them back and forth

- In the quarks, we had three quarks
- Emission or absorption of a W^{\pm} could convert them back and forth, but not equally
- The Z particle should also cause transitions that don't change the charge
 - This should cause $d \leftarrow \rightarrow$ s transitions
 - But they weren't observed
- In 1970, Glashow, Iliopoulos and Maiani found a solution
 - They had to assume there was a fourth quark, called charm
- In 1974, the charmed quark was discovered by Richter and Ting

The List Grows . . . But Not Forever

- In 1975, a new lepton was discovered, named the τ
 - It is just like the electron and muon, only heavier

- There was associated evidence for a new neutrino
 - Finally proven in 2001

- Complicated arguments suggested it was likely there was another pair of quarks, too
 - Bottom quark (originally beauty) discovered in 1977
 - Top quark (originally truth) discovered in 1995
 - Around 1989, measurements of the Z established that there were no new neutrinos
 - We now think this means we didn't miss anything

All Standard Model Particles

		<u>Particle</u>	symbol	<u>s spin</u>	<u>charge</u>	Mass (MeV/ c^2)
		Electron	e ⁻	$\frac{1}{2}$	-1	0.511
		Neutrino 1	ν_1	$\frac{1}{2}$	0	0?
	ns	Muon	μ	$\frac{1}{2}$	-1	105.7
les	leptons	Neutrino 2	$ u_2$	$\frac{1}{2}$	0	9×10^{-9} ?
ns rtic		Tau	$ au_{\mu}^{-}$	$\frac{1}{2}$	-1	1777
Fermions anti-parti		Neutrino 3	v_3	1/2	0	5×10^{-8} ?
Fermions (add anti-particles)		(Up quark	uuu	1/2	+2/3	3
ppı		Down quark	<u>d</u> dd	$\frac{1}{2}$	-1/3	5
3	quarks	Charm quark	ccc	$\frac{1}{2}$	+2/3	1,300
	lua:	Strange quark	SSS	$\frac{1}{2}$	-1/3	120
	б	Top quark	<i>ttt</i>	$\frac{1}{2}$	+2/3	174,200
		Bottom quark	bbb	1/2	-1/3	4,300
	S	Photon	γ	1	0	0
	force arrier	\int Gluon gg	<u>gggggg</u>	1	0	0
	force carriers	W-boson	W^{\pm}	1	±1	80,400
	J	Z-boson	Z^0	1	0	91,188
		Higgs	H	0	0	125,100

All Standard Model Particles

The Standard Model Lagrangian:

What part of

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - \frac{1}{2}W_{\mu\nu}^{+}W^{-\mu\nu} - \frac{1}{4}G_{\mu\nu}^{(a)}G^{(a)\mu\nu} + \sum_{f}\overline{\psi}_{f}\left[i\gamma^{\mu}D_{\mu} - m_{f}\left(1 + \frac{H}{v}\right)\right]\psi_{f}$$

$$+\left(m_{W}^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu}\right)\left(1 + \frac{H}{v}\right)^{2} + \frac{1}{2}\partial_{\mu}H\partial^{\mu}H - \frac{1}{2}m_{H}^{2}H^{2}\left(1 + \frac{H}{2v}\right)^{2}$$

don't you understand?

What's Missing?

- There are 18 numbers in this theory that must be put in by hand
 - 9 quark and lepton masses
 - 3 strengths of the forces (strong, weak, electromagnetic)
 - 4 describing the mixings in weak interactions
 - 2 describe the mass and strength of the Higgs field
 - The Higgs particle: discovery announced July 4, 2012
 - The three neutrinos are massless in the standard model
 - Experimental evidence for masses and mixing
 - It is easy to fix this too easy

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	<u>Events</u>
10^{-43} s	$10^{18} \overline{\mathrm{GeV}}$	Planck Era; time becomes meaningless?
10^{-39} s	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15} \mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10 ⁻¹³ s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10^{-11} s	160 GeV	Electroweak symmetry breaking Known Particle Physics
14 µs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Neutrino Decoupling
1.5 s	0.7 MeV	Neutron/Proton freezeout
20 s	170 keV	Electron/Positron annihilation
200 s	80 keV	Nucleosynthesis
57 ky	0.76 eV	Matter-Radiation equality
370 ky	0.26 eV	Recombination
600 My	30 K	First Structure/First Stars
13.8 Gy	2.725 K	Today

The Era of Particle Physics More Particles Become Relevant

- At temperatures of 0.2 30 MeV, photons, neutrinos, and electrons (and their antiparticles) are effectively massless, and appear in high numbers
- Above 35 50 MeV (~ 0.3 ms) the muons and pions are relevant
- The pions are strongly interacting, and start to affect how all strongly interacting particles appear
- Theory says that the strong force becomes weaker at higher energy
- At 150 MeV quarks shift from being trapped in baryons and mesons to being free
 - Universe is filled with "quark soup"

Quark Confinement

- At low temperatures (< 40 MeV) just an occasional baryon
- At 45 MeV, pions start to appear
- At 150 MeV, the pions are so thick that they start overlapping with each other
- Quarks can jump from one pion to the next
- Strong force gets weaker at higher energy
 - Effectively confinement doesn't apply
- Quarks go from free to confined at 150 MeV
- At this temperature there are up, down, and strange quarks, and gluons
- In addition to the photons, neutrinos, electrons, and muons

<u>Time</u>	\underline{T} or $k_B \underline{T}$	<u>Events</u>
14 μs	$150 \overline{\text{MeV}}$	Quark Confinement

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2 = \frac{2.42 \text{ s}}{\sqrt{61.75}} \left(\frac{\text{MeV}}{150 \text{ MeV}}\right)^2$$

$$=1.4\times10^{-5}$$
 s

Particles in the Early Universe

$$g_{\text{eff}} = g_b + \frac{7}{8}g_f$$

- For $k_B T < 150$ MeV, quarks are bound and it's complicated
- Above 150 MeV, all particles are in thermal equilibrium
- As temperature rises, particles get included when $3k_BT > mc^2$
- For 150 400 MeV, include e, μ , u, d, s, v_1 , v_2 , v_3 , γ , and g
- At 400 MeV, add c; at 600 add τ
- At 1.5 GeV add *b*
- At 30 GeV, add W and Z
- At 40 GeV, add *H*; at 60 add *t*
- Above 60 GeV, we have

$$g_{\text{eff}} = 28 + \frac{7}{8} (90) = 106.75$$

Particle	symbols	s spin	g	mc^2 (MeV)
Electron	\overline{e}	$\frac{1}{2}$	4	0.511
Neutrino 1	ν_1	$\frac{1}{2}$	2	~0
Up quark	uuu	$\frac{1}{2}$	12	~5
Down quark	d dd	$\frac{1}{2}$	12	~10
Muon	μ	$\frac{1}{2}$	4	105.7
Neutrino 2	ν_2	$\frac{1}{2}$	2	~ 0
Charm quark	ccc	$\frac{1}{2}$	12	1,270
Strange quark	SSS	$\frac{1}{2}$	12	~100
Tau	au	$\frac{1}{2}$	4	1,777
Neutrino 3	ν_3	$\frac{1}{2}$	2	~ 0
Top quark	ttt	$\frac{1}{2}$	12	173,000
Bottom quark	b bb	$\frac{1}{2}$	12	4,700
Photon	γ	1	2	0
Gluon g gg	gggg	1	16	0
W-boson	W	1	6	80,400
Z-boson	Z	1	3	91,200
Higgs	Н	0	1	125,100

Electroweak Phase Transition

- There are three forces that particle physicists understand:
 - Strong, electromagnetic, and weak
- Electromagnetic and weak forces affected by a field called the *Higgs field*
- The shape of the Higgs potential is interesting:
 - Sometimes called a Mexican Hat potential
- At low temperatures (us), one direction is easy to move (EM forces) and one is very hard (weak forces) $V(\phi)$
- At high temperatures, (early universe) you naturally move to the middle of the potential
- All directions are created equal
- Electroweak unification becomes apparent at perhaps $k_BT = 160 \text{ GeV}$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2 = \frac{2.42 \text{ s}}{\sqrt{106.75}} \left(\frac{\text{MeV}}{160,000 \text{ MeV}}\right)^2 \approx 10^{-11} \text{ s}$$

<u>Time</u>	\underline{T} or $k_B \underline{T}$	<u>Events</u>
$10^{-11}\mathrm{s}$	160 GeV	Electroweak Symmetry Breaking

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events
10^{-43} s	$10^{18} \overline{ ext{GeV}}$	Planck Era; time becomes meaningless?
$10^{-39} \mathrm{s}$	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15}\mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10^{-13} s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10^{-11} s	160 GeV	Electroweak symmetry breaking Unknown Particle Physics
$14 \mu s$	150 MeV	Quark Confinement
0.4	4 # 3 # 3 #	
$0.4 \mathrm{s}$	1.5 MeV	Neutrino Decoupling
1.5 s	0.7 MeV	Neutron/Proton freezeout
20 s	170 keV	Electron/Positron annihilation
200 s	80 keV	Nucleosynthesis
57 ky	0.76 eV	Matter-Radiation equality
370 ky	0.26 eV	Recombination
600 My	30 K	First Structure/First Stars
13.8 Gy	2.725 K	Today