The Radiation Era Radiation Energy Density What Counts as Radiation?

Any matter that is relativistic (p >> mc) will red shift the same way:

• Energy is given by:

$$E = \sqrt{p^2 c^2 + m^2 c^4} \approx pc$$

• Like light, it has wavelength: $\lambda = h/p$

• Like light, wavelength stretches as universe expands $\lambda/\lambda_0 = a/a_0$

• Therefore, momentum decreases with time:

 $E = pc \propto a^{-1}$

• Number density is also dropping:

• Therefore, its density falls as

$$n \propto a^{-3}$$

$$\rho \propto u \propto a^{-4}$$

What might count as radiation?

- Today: photons, gravitons
- Recent past: neutrinos
- In the distant past: everything, if hot enough

Mass Density of Radiation

We previously calculated mass density for photons:

- The factor of 2 was counting spin states = polarizations
- Can we generalize this for other things besides photons?

$$\rho = \frac{2}{30} \frac{\pi^2}{(\hbar c)^3} \frac{\left(k_B T\right)^4}{\left(\hbar c\right)^3 c^2}$$

What are the differences?

- The other particles might have different number of spin states: $2 \rightarrow g$
- The other particles might be at a different temperature: $T \rightarrow T_i$
- The other particles might be fermions
 - You can't put more than one fermion in the same quantum state
 This decreases the total energy by a factor of 7/8 $\rho = \frac{\pi^2 (k_B T)^7}{30(\hbar c)^3 c^2} g_{\text{eff}}$

$$\rho = \frac{\pi^2 \left(k_B T\right)^4}{30 \left(\hbar c\right)^3 c^2} \mathbf{g}_{\text{eff}}$$

$$\rho_{i} = \begin{cases} \frac{\pi^{2}}{30} \frac{\left(k_{B} T_{i}\right)^{4}}{\left(\hbar c\right)^{3} c^{2}} \mathbf{g} & \text{for bosons} \\ \frac{\pi^{2}}{30} \frac{\left(k_{B} T_{i}\right)^{4}}{\left(\hbar c\right)^{3} c^{2}} \frac{7}{8} \mathbf{g} & \text{for fermions} \end{cases}$$

$$\mathbf{g}_{\text{eff}} = \sum_{\text{bosons}} g_b \left(\frac{T_b}{T}\right)^4 + \sum_{\text{fermions}} \frac{7}{8} g_f \left(\frac{T_f}{T}\right)^4$$

$$g_{\text{eff}} = g_b + \frac{7}{8}g_F$$

When Does Matter = Radiation?

 $z_{eq} \approx 3400$

• In homework O, we found density of all matter and electromagnetic radiation:

There are also some neutrinos

- Three types, plus anti-particles (g = 6)
- They are fermions (factor of 7/8)
- They are at a lower temperature: $T_{\nu} = 0.7138T$
- This value valid back to about $k_B T = 100 \text{ keV}$
- The correct radiation density is therefore
- In the past, these densities were bigger

$$\frac{\rho_r = \rho_{r0} (1+z)^4}{\rho_m = \rho_{m0} (1+z)^3} \qquad \frac{\rho_m}{\rho_r} = \frac{\rho_{m0} (1+z)^3}{\rho_{r0} (1+z)^4} = \frac{3400}{1+z}$$

Radiation was more important before

$$\rho_{m0} = \frac{\Omega_m H_0^2}{\frac{8}{3}\pi G} = 2.65 \times 10^{-27} \text{ kg/m}^3,$$

$$\rho_{\gamma 0} = 2\frac{\pi^2}{30} \frac{\left(k_B T_0\right)^4}{\left(\hbar c\right)^3 c^2} = 4.64 \times 10^{-31} \text{ kg/m}^3,$$

$$g_{\text{eff}} = 2 + \frac{7}{8} \cdot 6 \cdot \left(0.7138\right)^4$$

$$g_{\text{eff}} = 3.36$$

$$\rho_{r0} = \frac{g_{\text{eff}}}{2} \rho_{\gamma 0} = 7.80 \times 10^{-31} \text{ kg/m}^3,$$

$$T_{eq} \approx 9260 \text{ K}$$
 $k_B T_{eq} \approx 0.798 \text{ eV}$
 $t_{eq} \approx 51,400 \text{ yr}$

Time-Temperature Relation

$$\frac{\dot{a}^2}{a^2} = \frac{8}{3}\pi G\rho$$

- Friedmann Equation:
- We can relate density at any time to density at one time t_1 : $\rho = \rho_1 (a_1/a)^4$
- Substitute in
- Let $x = a/a_1$, as before:

$$\frac{\dot{a}^2}{a^2} = \frac{8}{3}\pi G \rho_1 \frac{a_1^4}{a^4}$$

$$\frac{\dot{x}^2}{x^2} = \frac{8}{3}\pi G \rho_1 x^{-4} \qquad \left(\frac{dx}{dt}\right)^2 = \frac{\frac{8}{3}\pi G \rho_0}{x^2} \qquad dt = \frac{x dx}{\sqrt{\frac{8}{3}\pi G \rho_1}} \qquad t_1 = \int_0^1 \frac{x dx}{\sqrt{\frac{8}{3}\pi G \rho_1}}$$

$$dt = \frac{xdx}{\sqrt{\frac{8}{3}\pi G\rho_1}}$$

$$t_1 = \int_0^1 \frac{x \, dx}{\sqrt{\frac{8}{3} \pi G \rho_1}}$$

 $t_1 = \sqrt{\frac{3}{32\pi G \rho_1}}$

- Valid at any time during radiation era
 - Drop the subscript 1
- Substitute expression for density

$$t = \sqrt{\frac{3}{32\pi G} \frac{30c^{2} (\hbar c)^{3}}{\pi^{2} g_{\text{eff}} (k_{B}T)^{4}}} = \frac{6.213 \times 10^{-26} \text{ J}^{2} \cdot \text{s}}{\sqrt{g_{\text{eff}} (k_{B}T)^{2}}}$$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

Which Formula Do I Use?

Recent Past: $(z < 3000, k_B T < 0.5 \text{ eV})$

$$t = \frac{17.3 \text{ Gyr}}{\left(1+z\right)^{3/2}}$$

$$t = \frac{17.3 \text{ Gyr}}{(1+z)^{3/2}}$$

$$t = \frac{64.0 \text{ kyr}}{(k_B T/\text{eV})^{1.5}}$$

Distant Past: $(z > 3000, k_B T > 0.5 \text{ eV})$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

$$g_{\text{eff}} = 3.36$$

$$\text{if } k_B T < 0.1 \text{ MeV}$$

$$g_{\text{eff}} = 3.36$$
if $k_B T < 0.1 \text{ MeV}$

Number Density of Particles:

- We sometimes want to know about how many particles are present
- We need to do an integral similar to the one we did for energy density
- The main difference is that the integral doesn't contain a factor of *E*, the energy
- When you work it all out, you get
- The average energy is the ratio of the energy to the number density $\overline{E} = \frac{u}{n}$
- It works out to about

$$\overline{E} \approx 3k_{\scriptscriptstyle B}T$$

$$u_{i} = \begin{cases} \frac{\pi^{2}}{30} \frac{\left(k_{B}T_{i}\right)^{4}}{\left(\hbar c\right)^{3}} \mathbf{g} & \text{for bosons} \\ \frac{\pi^{2}}{30} \frac{\left(k_{B}T_{i}\right)^{4}}{\left(\hbar c\right)^{3}} \frac{7}{8} \mathbf{g} & \text{for fermions} \end{cases}$$

$$n_{i} = \begin{cases} \frac{\zeta(3)}{\pi^{2}} \left(\frac{k_{B}T_{i}}{\hbar c}\right)^{3} \mathbf{g} & \text{for bosons} \\ \frac{\zeta(3)}{\pi^{2}} \left(\frac{k_{B}T_{i}}{\hbar c}\right)^{3} \frac{3}{4} \mathbf{g} & \text{for fermions} \end{cases}$$

$$\zeta(3) \equiv \sum_{n=1}^{\infty} \frac{1}{n^3} = 1.202$$

When Do Particles Disappear?

- Assume we have a means for eliminating particles
- At high temperature $(3k_BT >> mc^2)$, the particles are effectively massless
 - Treat as massless

- At low temperature $(3k_BT << mc^2)$, the particles are supermassive
 - Probability of each state being occupied is very small
 - Treat as if particle doesn't exist
- For example, density as a function of mass:

Include particles with mass $mc^2 < 3k_BT$ Exclude particles with mass $mc^2 > 3k_BT$

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	<u>Events</u>
10^{-43} s	$10^{18} \overline{\text{GeV}}$	Planck Era; time becomes meaningless?
10^{-39} s	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15}\mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10^{-13} s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
$10^{-11} s$	160 GeV	Electroweak symmetry breaking
14 μs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Neutrino Decoupling
1.5 s	0.7 MeV	Neutron/Proton freezeout Nuclear Interactions
20 s	170 keV	Electron/Positron annihilation
200 s	80 keV	Nucleosynthesis
57 ky	0.76 eV	Matter-Radiation equality
370 ky	0.26 eV	Recombination
600 My	30 K	First Structure/First Stars
13.8 Gy	2.725 K	Today

Electron-Positron Annnihilation

Particles and Anti-Particles

- For every particle there is an anti-particle
 - Same mass, same spin opposite charge
- Consider the electron, denoted $e^-(m = 511 \text{ keV}/c^2, \text{spin } \frac{1}{2}, \text{ charge } -e)$

- The anti-electron e^+ ($m = 511 \text{ keV}/c^2$, spin ½, charge +e)
 - Anti-electron is also known as positron

- Sometimes, particles are their own anti-particles
 - The photon, for instance
- There are always processes that cause particles and anti-particles to be created and destroyed
 - Example: electrons and positrons

Thermal Equilibrium for Electrons & Positrons

$$e^- + e^+ \leftrightarrow \gamma + \gamma$$

- This process has a cross-section comparable to Thomson cross section
 - Easily keeps things in thermal equilibrium at early times
- Electrons, positrons and photons all in thermal equilibrium
- At high temperatures $(k_B T >> m_e c^2)$, the electrons are effectively massless
- They will contribute to energy density proportional to the spin states
 - Two spin states for electron
 - Two more for the positron

$$g_e = 4$$

• The total energy in photons, electrons, and positrons at early times is

$$\rho = \frac{\pi^2 (k_B T)^4}{30 (\hbar c)^3 c^2} \mathbf{g}_{\text{eff}} \qquad \qquad g_{\text{eff}} = g_b + \frac{7}{8} g_F = 2 + \frac{7}{8} \cdot 4 = 5.5$$

When Do the Electrons & Positrons Annihilate?

$$e^- + e^+ \leftrightarrow \gamma + \gamma$$

- Recall: energy for massless particles (like photons) are typically $3k_BT$
- To make a positron/electron pair, we need two photons to have energy $2m_ec^2$
- In round numbers, we can make process go to the left if and only if:

$$3k_{\scriptscriptstyle B}T > m_{\scriptscriptstyle e}c^2$$

- Since $m_e c^2 = 511 \text{ keV}$, this means we need $k_B T > 170 \text{ keV}$
- Electrons and Positrons annihilate at about 170 keV
- This is at $t \approx 20$ s

<u>Time</u>	\underline{T} or $k_B \underline{T}$	<u>Events</u>
20 s	170 keV	Electron/Positron annihilation

- However, there are still some electrons (not positrons) around today
 - About 10^{-10} compared to the number that were there then
- This implies there was a tiny surplus of electrons over positrons beforehand
 - Related to baryon asymmetry
 - To be described later

Annihilation "Reheating" of Photons

$$e^- + e^+ \leftrightarrow \gamma + \gamma$$

- As temperature drops, due to expansion of universe, electrons and positrons annihilate to make photons
- This causes "reheating" of photons
 - A misnomer, actually what happens is photons cool more slowly
- We normally say that temperature drops inversely proportional to scale factor

$$a_{\text{after}} T_{\text{after}} = a_{\text{before}} T_{\text{before}}$$

• However, the energy in electrons + positrons + photons gets rechanneled into just photons

$$g_{\text{eff,before}} = 5.5, \quad g_{\text{eff,after}} = 2$$

Can show this causes photons to be hotter than expected:

$$a_{\text{after}} T_{\text{after}} = (5.5/2)^{1/3} a_{\text{before}} T_{\text{before}} = 1.401 a_{\text{before}} T_{\text{before}}$$

Neutrino Decoupling

Neutrinos

- Some important particles for our discussion are the neutrinos
- There are three types of neutrinos labeled v_1 , v_2 , and v_3 *
- They have very small masses, $m_i < 2 \text{ eV}/c^2$
 - At these early times, treat them as massless
- They are spin ½ and are their own anti-particles**
- At low energies, their interactions are very weak
 - In fact, the interactions they have are called *weak interactions*
- Weak Interactions typically have cross-sections of order
- G_F is a new constant called *Fermi's constant*
- E_1 and E_2 are the energies of the two colliding particles

$$\sigma \approx \frac{G_F^2}{\left(\hbar c\right)^4} E_1 E_2$$

$$\frac{G_F}{(\hbar c)^3} = 1.166 \times 10^{-5} \text{ GeV}^{-2}$$

- *Often, the three neutrinos are listed as v_e , v_μ , and v_τ . For technical reasons that don't concern us, this is now known to be more or less wrong
- **This may be wrong, but if so, the errors introduced by this assumption cancel out

What Keeps Neutrinos in Equilibrium?

- Are neutrinos, or were they ever, in equilibrium?

 e^+

- How fast does this happen?
- Typical cross-section is about

$$\sigma \approx \frac{G_F^2}{\left(\hbar c\right)^4} E_1 E_2$$

- Typical energies around $3k_BT$
- Density of electrons around $n \approx \frac{g}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3$
- Relative velocity around *c*

$$\Gamma = n\sigma(\Delta v) \approx \frac{G_F^2 c}{(\hbar c)^7} (k_B T)^5$$

When Did Neutrinos Decouple?

$$\Gamma \approx \frac{G_F^2 c}{\left(\hbar c\right)^7} \left(k_B T\right)^5$$

- We generally consider something in equilibrium as long as $\Gamma t >> 1$
- Age in the radiation dominated era is
- Therefore: $\Gamma t \propto (k_B T)^3$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

- Equilibrium well-maintained at high *T*, poorly at low *T*
- Neutrinos decouple at about 1.5 MeV
- Corresponding time is about 0.4 s

<u>Time</u>	$T \text{ or } k_B T \text{Events}$	
0.4 s	1.5 MeV	Neutrino Decoupling
20 s	170 keV	Electron/Positron annihilation

Background Neutrino Temperature

- As k_BT drops below 1.5 MeV, neutrinos cease to be in thermal equilibrium with everything else
- However, as long as they are massless, a thermal distribution remains thermal
- The photons were reheated by electron-positron annihilation

$$a_{\text{after}} T_{\text{after},\gamma} = \left(\frac{5.5}{2}\right)^{1/3} a_{\text{before}} T_{\text{before}}$$

- In contrast, for neutrinos

Combining these,
$$a_{\text{after}} T_{\text{after}, \nu} = a_{\text{before}} T_{\text{before}}$$

$$a_{\text{after}} T_{\text{after},\gamma} = \left(\frac{5.5}{2}\right)^{1/3} a_{\text{after}} T_{\text{after},\nu}$$

$$T_{\nu} = \left(\frac{2}{5.5}\right)^{1/3} T_{\gamma} = 0.714 T_{\gamma}$$

So, after electron/positron annihilation

$$T_{v0} = 1.945 \text{ K}$$

- Assuming we can treat neutrinos as massless, this even applies today
- And we can even calculate the number density of neutrinos

$$n_{vi} = \frac{\zeta(3)}{\pi^2} \left(\frac{k_B T_v}{\hbar c}\right)^3 \frac{3}{4} \cdot 2 = 1.12 \times 10^8 \text{ m}^{-3}$$

Even if the mass becomes relevant, this number density is still correct

Proton/Neutron Freezeout

Baryons

- Most of the ordinary mass of the current universe is in the form of protons or neutrons
- These two particles are part of a class of particles called *baryons*
- According to our current theory of particle physics, baryons are conserved*
- The total number of baryons is tiny ($\sim 10^{-9}$) compared to, say, photons
 - This needs to be explained
 - Comes much later
- Weak interactions can convert protons $\leftarrow \rightarrow$ neutrons
- We would like to understand what determined the ratio of these to each other
 - Proton/neutron freezeout
- And how they got bound together into nuclei
 - Primordial Nucleosyntheis

*Later we will discuss the possibility that they are not conserved

Neutron Decay and Interconversion

Particle processes are a lot like equations

- You can turn them around and they still work
- You can move particles to the other side by "subtracting them"
 - This means replacing them with anti-particles
- The neutron (in isolation) is an unstable particle
 - Decays to proton + electron + anti-neutrino
 - Mean lifetime: 882 seconds
- Put the electron on the other side
- Put the neutrino on the other side
- All thee processes convert neutrons to protons and vice versa

$$n^0 + e^+ \longleftrightarrow p^+ + v$$

$$n^0 + p \leftrightarrow p^+ + e$$

Neutron/Proton Interconversion Rates

- At early times ($t \sim 1$ s) the first process is too slow
- with cross sections like

 E_1 is energy of electron or neutrino, at neutrino freezeout $3k_BT \sim 5 \text{ MeV}$

- But the other energy, E_2 is the much larger proton or neutron rest mass $\sim 900 \text{ MeV}$
- Compared to neutrino freezeout ($k_BT = 1.5 \text{ MeV}$), this cross-section is bigger
- It allows this process to stay in equilibrium a bit longer
- So this neutron/proton freezeout occurs around $k_BT = 0.71 \text{ MeV}$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T} \right)^2$$

$$\begin{array}{c|cccc} \underline{\text{Time}} & \underline{T} \text{ or } k_{\underline{B}}\underline{T} & \underline{\text{Events}} \\ 0.4 \text{ s} & 1.5 \text{ MeV} & \text{Neutrino Decoupling} \\ 1.5 \text{ s} & 0.71 \text{ MeV} & \text{Neutron/Proton freezeout} \\ 20 \text{ s} & 0.2 \text{ MeV} & \underline{\text{Electron/Positron annihilation}} \end{array}$$

$$=\frac{2.42 \text{ s}}{\sqrt{10.75}} \left(\frac{\text{MeV}}{0.71 \text{ MeV}}\right)^2 = 1.5 \text{ s}$$

Neutron/Proton Freezeout

At $k_BT = 0.71$ MeV, the process stops

$$P(E) \propto \exp\left(-\frac{E}{k_B T}\right)$$

- What is ratio of protons to neutrons at this temperature?
- Non-relativistic, $E = mc^2$.

$$P_n \propto \exp\left(-\frac{m_n c^2}{k_B T}\right), \quad P_p \propto \exp\left(-\frac{m_p c^2}{k_B T}\right)$$

$$\left((\Delta m)c^2\right) \qquad (1.294 \text{ MeV})$$

• Ratio is:
$$P_{n} \propto \exp\left(-\frac{m_{n}c}{k_{B}T}\right), \quad P_{p} \propto \exp\left(-\frac{m_{p}c}{k_{B}T}\right)$$

$$\frac{n_{n}}{n_{p}} = \frac{P_{n}}{P_{p}} = \frac{\exp\left(-\frac{m_{n}c^{2}}{k_{B}T}\right)}{\exp\left(-\frac{m_{p}c^{2}}{k_{B}T}\right)} = \exp\left(-\frac{(\Delta m)c^{2}}{k_{B}T}\right) = \exp\left(-\frac{1.294 \text{ MeV}}{0.71 \text{ MeV}}\right) = 0.162$$

$$\frac{n_{n}}{n_{B}} = \frac{n_{n}}{n_{n} + n_{p}} = \frac{0.162}{1.162} = 0.139$$
• Neutron/proton ratio at this point freezes

- Neutron/proton ratio at this point freezes
- But the neutrons continue decaying through the process we've been ignoring

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events
10^{-43} s	$10^{18} \overline{\text{GeV}}$	Planck Era; time becomes meaningless?
$10^{-39} s$	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15}\mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
1 0 12	1500 C X	
10^{-13} s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10^{-11} s	160 GeV	Electroweak symmetry breaking
14 μs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Neutrino Decoupling
0.4 s 1.5 s	1.5 MeV 0.7 MeV	Neutrino Decoupling Neutron/Proton freezeout
1.5 s	0.7 MeV	Neutron/Proton freezeout
1.5 s 20 s	0.7 MeV 170 keV	Neutron/Proton freezeout Electron/Positron annihilation
1.5 s 20 s	0.7 MeV 170 keV	Neutron/Proton freezeout Electron/Positron annihilation
1.5 s 20 s 200 s	0.7 MeV 170 keV 80 keV	Neutron/Proton freezeout Electron/Positron annihilation Nucleosynthesis
1.5 s 20 s 200 s	0.7 MeV 170 keV 80 keV 0.76 eV	Neutron/Proton freezeout Electron/Positron annihilation Nucleosynthesis Matter-Radiation equality
1.5 s 20 s 200 s 57 ky 370 ky	0.7 MeV 170 keV 80 keV 0.76 eV 0.26 eV	Neutron/Proton freezeout Electron/Positron annihilation Nucleosynthesis Matter-Radiation equality Recombination

Primordial Nucleosynthesis

Stellar Versus Primordial Nucleosynthesis

- Protons and neutrons have lower energy when they bind into more complex nuclei
- Just as in stars, the first step is to make deuterium, ²H
- However, many aspects of stellar and primordial nucleosynthesis are different

Stellar Nucleosynthesis

- Starts with just protons
 - First step is partly weak interaction
- Occurs at high density
 - Denser than lead (for the Sun)
- Must have sufficiently high temperature
- Takes billions of years to complete

Primordial Nucleosynthesis

- Starts with protons and neutrons
 - First step is mostly strong interaction
- Occurs at low density
 - Less dense than air
- Must have sufficiently low temperatures
- Must finish in a few minutes

The Deuterium Bottleneck

• The first step in making more complex elements is to make ²H, deuterium:

- This releases about $E_b = 2.24$ MeV of energy
- This process is very similar to recombination
 - With the neutrons playing the role of electrons getting bound to protons
- We get a similar Saha-type equation describing the abundance of n^0 , p^+ , and 2H :

$$\frac{n_D}{n_n} = \frac{3}{4} n_p \left(\frac{k_B T m_n m_p}{2\pi \hbar^2 m_D} \right)^{-3/2} \exp\left(\frac{E_b}{k_B T} \right)$$

- The most important factor here is the exponential
 - Strongly favors deuterium once $k_BT < 2.24 \text{ MeV}$
- However, because the density of hydrogen is so low, the exponential has to beat a tiny factor
- At around $k_BT = 0.1$ MeV, neutrons will suddenly be incorporated into deuterium

<u>Time</u>	\underline{T} or $\underline{k_B}\underline{T}$	<u>Events</u>
0.4 s	1.5 MeV	Neutrino Decoupling
1.5 s	0.71 MeV	Neutron/Proton freezeout
20 s	0.2 MeV	Electron/Positron annihilation
200 s	80 keV	Primordial nucelosynthesis

What is the Neutron/Proton Ratio?

- At around $k_BT = 0.1$ MeV, neutrons will suddenly be incorporated into deuterium
- The time at this point will be
- During this time, neutrons have been decaying steadily, so the neutron fraction will be reduced
- About 1/8 of the baryons are currently neutrons

$$\frac{n_D}{n_n} = \frac{3}{4} n_H \left(\frac{k_B T m_n m_H}{2\pi \hbar^2 m_D} \right)^{-3/2} \exp\left(\frac{E_b}{k_B T} \right)$$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2 = \frac{2.42 \text{ s}}{\sqrt{3.36}} \left(\frac{\text{MeV}}{0.1 \text{ MeV}}\right)^2 = 132 \text{ s}$$

$$\left(\frac{n_n}{n_B}\right)_{132 \text{ s}} = \left(\frac{n_n}{n_B}\right)_{15 \text{ s}} \exp\left(-\frac{130 \text{ s}}{882 \text{ s}}\right) = 0.120$$

- A comparable number of protons get incorporated into deuterons
 - So ¼ of the baryons are in deuterons
- The *exact* time this happens will depend weakly on density of baryons
 - The more baryons, the earlier it happens
- And therefore, the *exact* fraction that becomes deuterons will depend on density
 - The more baryons, the larger the fraction

Making Helium

• Once we make deuterium, we continue quickly to continue to ⁴He:

- For every two neutrons, there will be two protons that combine to make ⁴He
 - Mass fraction of ⁴He is twice that of neutron fraction

$$Y_P = \frac{\rho(^4 \text{He})}{\rho(\text{total})} = \frac{2n_n}{n_B} = 2 \times 0.12 = 0.24$$

- ⁴He is extremely stable once formed it won't go back
- The more baryons there are, the larger the neutron fraction
- Define η as the current ratio of baryons to photons
- As η increases, Y_P increases weakly:

$$\eta \equiv \frac{n_B}{n_{\gamma}}$$

$$Y_P = 0.248 + 0.011 \ln \left(\frac{\eta}{6 \times 10^{-10}} \right)$$

Making Other Elements

• As that last of the deuterium and neutrons are used up, other processes become important

- The last few ²H, ³He, and ³H nuclei will have trouble finding partners
 - There will be small amount of each of these isotopes left
- The more baryons there are, the easier it is to find a partner
 - As η increases, ²H, ³He, and ³H all decrease
- There are other rare processes that produce a couple of other isotopes:
- ⁷Li and ⁷Be are produced
 - Not sure how they depend on η
- Within a few hundred seconds, the baryons are all in n⁰, ¹H, ²H, ³H, ³He, ⁴He, ⁷Be and ⁷Li

Subsequent Decay and Observations

• Three of these are unstable:

$$n^{0} \rightarrow p^{+} + e^{-} + \overline{\nu}_{e}$$

$${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{+} + \nu_{e}$$

$${}^{7}\text{Be} + e^{-} \rightarrow {}^{7}\text{Li} + \nu_{e}$$

- Add n^0 to ¹H, ³H to ³He, and ⁷Be to ⁷Li
- The process whereby stars make heavier elements do *not* work in the early universe
- Density is too low for unstable ⁸Be to find another ⁴He to react with

$${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be}^{*}$$
 ${}^{8}\text{Be}^{*} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}$

- In the end, we should be able to predict abundance (compared to hydrogen) of ²H, ³He, ⁴He, ⁷Li
- We now wish to compare to observations

Observations of Primordial Densities

- At the end of Primordial Nucleosynthesis (and subsequent decay), we have a prediction of the following isotope fractions compared to hydrogen: ²H, ³He, ⁴He, ⁷Li
- These are *primordial* values
 - They will get subsequently modified by whatever happens in the later universe
- ⁴He tends to be created in stars
- We can estimate 4 He by looking at very early stars (Z low) that have not produced any *surface* helium
 - Requires extrapolation to Z = 0
- We can estimate ⁷Li in a similar way by looking at old stars
- For ³He and ²H, they tend to get quickly destroyed in stars
- We can study absorption lines of gas that we think probably has not yet been made into stars at all
- We need bright sources at very high red shift
 - Quasars

The Results

- Predictions for ⁴He, ²H and ³He all work very well
- Prediction for ⁷Li seems to be off
 - The Lithium problem
- Overall, success for the model

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events
10^{-43} s	$10^{18} \overline{\text{GeV}}$	Planck Era; time becomes meaningless?
$10^{-39} s$	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15} \mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10 ⁻¹³ s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10 ⁻¹¹ s	160 GeV	Electroweak symmetry breaking
14 μs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Neutrino Decoupling
1.5 s	0.7 MeV	Neutron/Proton freezeout
20 s	170 keV	Electron/Positron annihilation
200 s	80 keV	Nucleosynthesis
57 ky	0.76 eV	Matter-Radiation equality
370 ky	0.26 eV	Recombination
600 My	30 K	First Structure/First Stars
13.8 Gy	2.725 K	Today

Particle Physics and Early Events

- As we get to higher and higher temperatures, new particles appear
 - This happens roughly when $3k_BT = mc^2$
- Muons, mass 105.7 MeV/ c^2 , at about $k_BT = 35$ MeV (g = 4 fermions)
- Pions, mass 135-139 MeV/ c^2 , at about $k_BT = 45$ MeV (g = 3 bosons)
- At a temperature of about $k_BT = 150$ MeV, we have quark deconfinement
- As we get to still higher temperatures, we get to the electroweak phase transition
- And beyond that, we get into the realm of unknown physics
- To understand what we do and don't understand, we need to learn some particle physics