
Any matter that is relativistic (p >> mc) will red shift the same way:
• Energy is given by:
• Like light, it has wavelength:
• Like light, wavelength stretches as universe expands
• Therefore, momentum decreases with time:
• Number density is also dropping:
• Therefore, its density falls as 

2 2 2 4E p c m c= +
h pλ =

pc≈

0 0a aλ λ =
1E pc a−= ∝

3n a−∝
4u aρ −∝ ∝

What might count as radiation?
• Today: photons, gravitons
• Recent past: neutrinos
• In the distant past:  everything, if hot enough

What Counts as Radiation?

The Radiation Era
Radiation Energy Density



Mass Density of Radiation
We previously calculated mass density for photons:
• The factor of 2 was counting spin states = polarizations
• Can we generalize this for other things besides photons?

What are the differences?

• The other particles might have different number of spin states:  2  g

• The other particles might be at a different temperature:  T  Ti

• The other particles might be fermions
• You can’t put more than one fermion in the same quantum state
• This decreases the total energy by a factor of 7/8 
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When Does Matter = Radiation?
• In homework O, we found density of all matter and 

electromagnetic radiation:

There are also some neutrinos
• Three types, plus anti-particles (g = 6)
• They are fermions (factor of 7/8)
• They are at a lower temperature: Tν = 0.7138T
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• The correct radiation density is therefore
• In the past, these densities were bigger
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Time-Temperature Relation
• Friedmann Equation:

• We can relate density at any time to density at one time t1:
• Substitute in
• Let x = a/a1, as before:
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=• Valid at any time during radiation era
• Drop the subscript 1

• Substitute expression for density
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Which Formula Do I Use?

• Recent Past: (z < 3000, kBT < 0.5 eV )
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Number Density of Particles:
• We sometimes want to know about how many 

particles are present

• We need to do an integral similar to the one we 
did for energy density

• The main difference is that the integral doesn’t 
contain a factor of E, the energy

• When you work it all out, you get

• The average energy is the ratio of the
energy to the number density

• It works out to about 
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Bosons
Fermions

When Do Particles Disappear?
• Assume we have a means for eliminating particles

• At high temperature (3kBT >> mc2), the particles are 
effectively massless
• Treat as massless

• At low temperature (3kBT << mc2), the
particles are supermassive
• Probability of each state being

occupied is very small
• Treat as if particle doesn’t exist

• For example, density as
a function of mass:

3 BE k T≈

Include particles with mass mc2 < 3kBT
Exclude particles with mass mc2 > 3kBT



Outline of History of Universe
Time    T or kBT Events
10-43 s    1018 GeV Planck Era; time becomes meaningless?
10-39 s    1016 GeV Inflation begins; forces unified
10-35 s    1015 GeV Inflation ends; reheating; forces separate; baryosynthesis (?)

10-13 s    1500 GeV Supersymmetry breaking, LSP (dark matter)
10-11 s    160 GeV Electroweak symmetry breaking

14 µs    150 MeV Quark Confinement

0.4 s    1.5 MeV Neutrino Decoupling
1.5 s    0.7 MeV Neutron/Proton freezeout
20 s    170 keV Electron/Positron annihilation
200 s    80 keV Nucleosynthesis

57 ky    0.76 eV Matter-Radiation equality
370 ky    0.26 eV Recombination
600 My     30 K  First Structure/First Stars
13.8 Gy     2.725 K Today

Nuclear Interactions



Particles and Anti-Particles
• For every particle there is an anti-particle

• Same mass, same spin opposite charge

• Consider the electron, denoted e– (m = 511 keV/c2, spin ½, charge –e)
• The anti-electron e+ (m = 511 keV/c2, spin ½, charge +e) 

• Anti-electron is also known as positron

• Sometimes, particles are their own anti-particles
• The photon, for instance

• There are always processes that cause particles and anti-particles to be created and destroyed
• Example: electrons and positrons

e-

e+

e e γ γ− ++ ↔ +
e-

e+

Electron-Positron Annnihilation



Thermal Equilibrium for Electrons & Positrons

• This process has a cross-section comparable to Thomson cross section
• Easily keeps things in thermal equilibrium at early times

• Electrons, positrons and photons all in thermal equilibrium

• At high temperatures (kBT >> mec2), the electrons are effectively massless

• They will contribute to energy density proportional to the spin states
• Two spin states for electron
• Two more for the positron

• The total energy in photons, electrons, and positrons at early times is
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When Do the Electrons & Positrons Annihilate?

• Recall: energy for massless particles (like photons) are typically 3kBT
• To make a positron/electron pair, we need two photons to have energy 2mec2

• In round numbers, we can make process go to the left if and only if:

• Since mec2 = 511 keV, this means we need kBT > 170 keV

• Electrons and Positrons annihilate at about 170 keV
• This is at t ≈ 20 s

• However, there are still some electrons (not positrons) around today
• About 10–10 compared to the number that were there then

• This implies there was a tiny surplus of electrons over positrons beforehand
• Related to baryon asymmetry
• To be described later

23 B ek T m c>

e e γ γ− ++ ↔ +

Time  T or kBT  Events
20 s  170 keV Electron/Positron annihilation



Annihilation “Reheating” of Photons

• As temperature drops, due to expansion of universe, electrons and positrons annihilate to make 
photons

• This causes “reheating” of photons
• A misnomer, actually what happens is photons cool more slowly

• We normally say that temperature drops inversely proportional to scale factor

• However, the energy in electrons + positrons + photons gets rechanneled into just photons

• Can show this causes photons to be hotter than expected:

e e γ γ− ++ ↔ +

after after before beforea T a T=

eff,before eff,after5.5, 2g g= =

( )1/3
after after before before5.5 2a T a T=

before before1.401a T=



Neutrinos
• Some important particles for our discussion are the neutrinos

• There are three types of neutrinos labeled ν1, ν2, and ν3 *
• They have very small masses, mi < 2 eV/c2

• At these early times, treat them as massless
• They are spin ½ and are their own anti-particles**

• At low energies, their interactions are very weak
• In fact, the interactions they have are called weak interactions

• Weak Interactions typically have cross-sections of order
• GF is a new constant called Fermi’s constant
• E1 and E2 are the energies of the two colliding particles

Neutrino Decoupling

*Often, the three neutrinos are listed as νe, νµ, and ντ.  For technical reasons that don’t concern us, 
this is now known to be more or less wrong 
**This may be wrong, but if so, the errors introduced by this assumption cancel out
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What Keeps Neutrinos in Equilibrium?

• Are neutrinos, or were they ever, in equilibrium?

• One process that creates and eliminates neutrinos is

• How fast does this happen?

• Typical cross-section is about

• Typical energies around 3kBT

• Density of electrons around

• Relative velocity around c 

• Total rate about 

e e ν ν− ++ ↔ +
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e+
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When Did Neutrinos Decouple?

• We generally consider something in equilibrium as long as Γt >> 1

• Age in the radiation dominated era is

• Therefore:

• Equilibrium well-maintained at high T, poorly at low T

• Neutrinos decouple at about 1.5 MeV

• Corresponding time is about 0.4 s
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Background Neutrino Temperature
• As kBT  drops below 1.5 MeV, neutrinos cease to be in thermal equilibrium with everything else
• However, as long as they are massless, a thermal distribution remains thermal

• The photons were reheated by electron-positron annihilation

• In contrast, for neutrinos 

• Combining these,

• So, after electron/positron annihilation

• Assuming we can treat neutrinos as massless, this even applies today
• And we can even calculate the number

density of neutrinos

• Even if the mass becomes relevant, this number density is still correct
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Baryons
Proton/Neutron Freezeout

• Most of the ordinary mass of the current universe is in the form of protons or neutrons
• These two particles are part of a class of particles called baryons

• According to our current theory of particle physics, baryons are conserved*
• The total number of baryons is tiny (~10-9) compared to, say, photons

• This needs to be explained
• Comes much later

• Weak interactions can convert protons  neutrons

• We would like to understand what determined the ratio of these to each other
• Proton/neutron freezeout

• And how they got bound together into nuclei
• Primordial Nucleosyntheis 

*Later we will discuss the possibility that they are not conserved



Neutron Decay and Interconversion

Particle processes are a lot like equations
• You can turn them around and they still work
• You can move particles to the other side by “subtracting them”

• This means replacing them with anti-particles

p+n0 e-
• The neutron (in isolation) is an unstable particle

• Decays to proton + electron + anti-neutrino
• Mean lifetime: 882 seconds

+ + ν

• Put the neutrino on the other side

p++n0 +

ν

• Put the electron on the other side

+

e+ ν

n0 p+ e-+
• All thee processes convert neutrons to protons 

and vice versa



Neutron/Proton Interconversion Rates
• At early times (t ~ 1 s) the first process is too slow

• The other two processes are
governed by weak interactions,
with cross sections like

• E1 is energy of electron or neutrino, at neutrino
freezeout 3kBT ~ 5 MeV

• But the other energy, E2 is the much larger proton or neutron rest mass ~ 900 MeV

• Compared to neutrino freezeout (kBT = 1.5 MeV), this cross-section is bigger
• It allows this process to stay in equilibrium a bit longer
• So this neutron/proton freezeout occurs around kBT = 0.71 MeV

p+n0 e-+ + ν

p++n0 +e+ ν

ν+n0 p+ e-+
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Time  T or kBT  Events
0.4 s  1.5 MeV Neutrino Decoupling
1.5 s  0.71 MeV Neutron/Proton freezeout
20 s  0.2 MeV Electron/Positron annihilation
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Neutron/Proton Freezeout
• At kBT = 0.71 MeV, the process stops

• What is ratio of protons to neutrons at this temperature?

• Non-relativistic, E = mc2.

• Ratio is:
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• Neutron/proton ratio at this point freezes

• But the neutrons continue decaying through
the process we’ve been ignoring p+n0 e-+ + ν



Outline of History of Universe
Time    T or kBT Events
10-43 s    1018 GeV Planck Era; time becomes meaningless?
10-39 s    1016 GeV Inflation begins; forces unified
10-35 s    1015 GeV Inflation ends; reheating; forces separate; baryosynthesis (?)

10-13 s    1500 GeV Supersymmetry breaking, LSP (dark matter)
10-11 s    160 GeV Electroweak symmetry breaking

14 µs    150 MeV Quark Confinement

0.4 s    1.5 MeV Neutrino Decoupling
1.5 s    0.7 MeV Neutron/Proton freezeout
20 s    170 keV Electron/Positron annihilation
200 s    80 keV Nucleosynthesis

57 ky    0.76 eV Matter-Radiation equality
370 ky    0.26 eV Recombination
600 My     30 K  First Structure/First Stars
13.8 Gy     2.725 K Today



Stellar Versus Primordial Nucleosynthesis
• Protons and neutrons have lower energy when they bind into more complex nuclei

• Just as in stars, the first step is to make deuterium, 2H

• However, many aspects of stellar and primordial nucleosynthesis are different

Primordial Nucleosynthesis

Stellar Nucleosynthesis
• Starts with just protons

• First step is partly weak interaction

• Occurs at high density
• Denser than lead (for the Sun)

• Must have sufficiently high temperature

• Takes billions of years to complete

Primordial Nucleosynthesis
• Starts with protons and neutrons

• First step is mostly strong interaction

• Occurs at low density
• Less dense than air

• Must have sufficiently low temperatures

• Must finish in a few minutes



The Deuterium Bottleneck
• The first step in making more complex

elements is to make 2H, deuterium:

• This releases about Eb = 2.24 MeV of energy
• This process is very similar to recombination

• With the neutrons playing the role of electrons getting bound to protons
• We get a similar Saha-type equation

describing the abundance of n0, p+, and 2H:

• The most important factor here is the exponential
• Strongly favors deuterium once kBT < 2.24 MeV

• However, because the density of hydrogen is so low, the exponential has to beat a tiny factor

• At around kBT = 0.1 MeV,
neutrons will suddenly be
incorporated into deuterium
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What is the Neutron/Proton Ratio?
• At around kBT = 0.1 MeV, neutrons

will suddenly be incorporated into deuterium

• The time at this point will be

• During this time, neutrons have been decaying
steadily, so the neutron fraction will be reduced

• About 1/8 of the baryons are currently neutrons

• A comparable number of protons get incorporated into deuterons
• So ¼ of the baryons are in deuterons

• The exact time this happens will depend weakly on density of baryons
• The more baryons, the earlier it happens

• And therefore, the exact fraction that becomes deuterons will depend on density
• The more baryons, the larger the fraction
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Making Helium
• Once we make deuterium, we continue quickly to continue to 4He:
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• For every two neutrons, there will be two protons that combine to make 4He
• Mass fraction of 4He is

twice that of neutron fraction

• 4He is extremely stable – once formed it won’t go back

• The more baryons there are, the larger the neutron fraction

• Define η as the current ratio of baryons to photons

• As η increases, YP increases weakly:
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Making Other Elements
• As that last of the deuterium and neutrons are used up, other processes become important

• The last few 2H, 3He, and 3H nuclei will have trouble finding partners
• There will be small amount of each of these isotopes left

• The more baryons there are, the easier it is to find a partner
• As η increases, 2H, 3He, and 3H all decrease

• There are other rare processes that produce a couple of other isotopes:

• 7Li and 7Be are produced
• Not sure how they depend on η

• Within a few hundred seconds, the baryons
are all in n0, 1H, 2H, 3H, 3He,  4He, 7Be
and 7Li
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Subsequent Decay and Observations
• Three of these are unstable:

• Add n0 to 1H, 3H to 3He, and 7Be to 7Li

• The process whereby stars make heavier elements do not work in the early universe

• Density is too low for unstable 8Be to find another 4He to react with

• In the end, we should be able to predict abundance (compared to hydrogen) of
   2H, 3He, 4He, 7Li

• We now wish to compare to observations
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Observations of Primordial Densities
• At the end of Primordial Nucleosynthesis (and subsequent decay), we have a

prediction of the following isotope fractions compared to hydrogen: 2H, 3He, 4He, 7Li

• These are primordial values
• They will get subsequently modified by whatever happens in the later universe

• 4He tends to be created in stars
• We can estimate 4He by looking at very early stars (Z low) that have not produced any surface 

helium
• Requires extrapolation to Z = 0

• We can estimate 7Li in a similar way by looking at old stars

• For 3He and 2H, they tend to get quickly destroyed in stars
• We can study absorption lines of gas that we think probably has not yet been made into stars at all
• We need bright sources at very high red shift

• Quasars



The Results

( ) 106.2 0.2 10η −= ± ×

• Predictions for 4He, 2H and 3He all work 
very well

• Prediction for 7Li seems to be off
• The Lithium problem

• Overall, success for the model



Outline of History of Universe
Time    T or kBT Events
10-43 s    1018 GeV Planck Era; time becomes meaningless?
10-39 s    1016 GeV Inflation begins; forces unified
10-35 s    1015 GeV Inflation ends; reheating; forces separate; baryosynthesis (?)

10-13 s    1500 GeV Supersymmetry breaking, LSP (dark matter)
10-11 s    160 GeV Electroweak symmetry breaking

14 µs    150 MeV Quark Confinement

0.4 s    1.5 MeV Neutrino Decoupling
1.5 s    0.7 MeV Neutron/Proton freezeout
20 s    170 keV Electron/Positron annihilation
200 s    80 keV Nucleosynthesis

57 ky    0.76 eV Matter-Radiation equality
370 ky    0.26 eV Recombination
600 My     30 K  First Structure/First Stars
13.8 Gy     2.725 K Today



• As we get to higher and higher temperatures, new particles appear
• This happens roughly when 3kBT = mc2

• Muons, mass 105.7 MeV/c2, at about kBT = 35 MeV (g = 4 fermions)

• Pions, mass 135-139 MeV/c2, at about kBT = 45 MeV (g = 3 bosons)

• At a temperature of about kBT = 150 MeV, we have quark deconfinement

• As we get to still higher temperatures, we get to the electroweak phase transition

• And beyond that, we get into the realm of unknown physics

• To understand what we do and don’t understand, we need to learn some particle physics

Particle Physics and Early Events
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