So, What's on the Test? History of the Universe Stuff

- There are a lot of things that happened, and a lot of times and temperatures were named
 - Some of them were no better than approximations
- However, the <u>order</u> in which they occurred is pretty well known
- I don't expect you to remember all the details of when they happened and at what temperature
- I do expect you to remember the order in which they happened
- And you should know a few approximate dates and temperatures

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events
10^{-43} s	$10^{18} \overline{\text{GeV}}$	Planck Era; time becomes meaningless?
10^{-39} s	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15}\mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10^{-13} s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10^{-11} s	160 GeV	Electroweak symmetry breaking
14 μs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Neutrino Decoupling
1.5 s		Neutron/Proton freezeout
	0.7 MeV	
20 s	170 keV	Electron/Positron annihilation
20 s 200 s	170 keV 80 keV	Electron/Positron annihilation Nucleosynthesis
20 s 200 s 57 ky	170 keV 80 keV 0.76 eV	Electron/Positron annihilation Nucleosynthesis Matter-Radiation equality
20 s 200 s	170 keV 80 keV	Electron/Positron annihilation Nucleosynthesis
20 s 200 s 57 ky	170 keV 80 keV 0.76 eV 0.26 eV	Electron/Positron annihilation Nucleosynthesis Matter-Radiation equality
20 s 200 s 57 ky 370 ky	170 keV 80 keV 0.76 eV 0.26 eV 30 K	Electron/Positron annihilation Nucleosynthesis Matter-Radiation equality Recombination

Which Ones Should I Have t or T Memorized?

- Now:
 - $t \sim 14 \text{ Gyr}, T \sim 2.7 \text{ K}$
 - Structure formation in the recent past
- Recombination and matter/radiation equality:
 - $t \sim 10^5 \text{ yr}, k_B T \sim \text{eV}$
- Neutrino decoupling, n/p freezeout, e^+e^- annihilation, nucleosynthesis
 - $t \sim s$, $k_B T \sim \text{MeV}$
- Everything else:
 - $t \sim \text{tiny}, k_B T \sim \text{hot}$

Scaling

- You should know that the scale factor of the universe (a), and all distances and wavelengths scale the same way.
- All these factors are related to the red-shift z by
- And the scale factor is also roughly inversely proportional to the temperature

$$\frac{a}{a_0} = \frac{d}{d_0} = \frac{\lambda}{\lambda_0} = \frac{1}{1+z} \approx \frac{T_0}{T}$$

- Why is this last relationship approximate?
 - Whenever a particle annihilates, its energy raises the temperature of everything else
- Still, this formula works so well it is still good for approximations

Scaling And Densities

$$\frac{a}{a_0} = \frac{d}{d_0} = \frac{\lambda_{\text{then}}}{\lambda_{\text{now}}} = \frac{1}{1+z} \approx \frac{T_0}{T}$$

- You should know how all components of the universe scale as the universe expands
- Matter: $\rho \sim a^{-3}$
 - Includes both ordinary (baryonic) matter and dark matter
- Radiation: $\rho \sim a^{-4}$
 - Includes any relativistic particles
- Cosmological constant: $\rho \sim a^0$
 - Does not scale
- This allows us to relate densities at any time to densities today

$$\rho_b = \rho_{b0} (1+z)^3,$$

$$\rho_d = \rho_{d0} (1+z)^3,$$

$$\rho_r = \rho_{r0} (1+z)^4,$$

$$\rho_{\Lambda} = \rho_{\Lambda 0}.$$

Radiation Densities

You will probably be given

$$\rho_r = g_{\text{eff}} \frac{\pi^2 (k_B T)^4}{30 (\hbar c)^3}$$

- You will also be given g_{eff} today
 - This applies all the way back to electron positron annihilation $g_{\text{eff,0}} = 3.36$

$$g_{\rm eff,0} = 3.36$$

However, you may have to calculate g_{eff} yourself

$$g_{\text{eff}} = g_b + \frac{7}{8}g_f$$

- And most important, know which particles to include in g_{eff} :
 - At temperature *T*, typical particles have energy:
 - If $3k_BT > mc^2$, particle is present and treat it as massless
 - If $3k_BT < mc^2$, particle will have annihilated

$$\overline{E} = 3k_{\scriptscriptstyle B}T$$

Time-Temperature Relations

You will probably be given two or three of the following time-temperature relations:

$$t = \frac{17.1 \text{ Gyr}}{(1+z)^{3/2}} = \frac{62.2 \text{ kyr}}{(k_B T/\text{eV})^{3/2}}$$

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

$$t = \frac{2.42 \,\mathrm{s}}{\sqrt{g_{\mathrm{eff}}}} \left(\frac{\mathrm{MeV}}{k_{B}T}\right)^{2}$$

- The two on the left are for matter dominated only, right is for radiation dominated only
- You should know when to use which:
 - Matter for z < 3000, $k_B T < 1$ eV
 - Radiation for z > 3000, $k_B T > 1$ eV
- Don't use either of them today
 - We are cosmological constant dominated
 - $t_0 \approx 14 \text{ Gyr}$

Cosmological Numbers to Memorize

- Here are some important cosmological parameters you should probably memorize:
- Well, not really memorize, but:
- You should know $\rho_{\Lambda} > \rho_d > \rho_b >> \rho_v >> \rho_{\gamma}$
- You should know that $\Omega = 1$
- You should know Hubble's constant is around 70 km/s/Mpc
- You should know the universe is around 14 Gyr old
- You should know the temperature is around 3 K or so

Other Formulas to Memorize

Some formulas that you should know from the second half:

- Hubble's Law
 - Unreliable at large distances/red-shifts

$$v = H_0 d \approx zc$$

 $\Gamma = n\sigma(\Delta v)$

- "Horizon size": The largest distance on which things can have any influence, based on age of universe d = ct
- Rates for particles to collide:
- n is the number density of particles (units m⁻³)
- σ is the cross-section of the particles (units m²)
 - You probably can't calculate it without help
- Δv is the relative velocity (units m/s)
 - Often just estimate it as the velocity of one particle
- Γ is the rate (units s⁻¹)
 - Often multiply by age of the universe to find out if something happens or not
 - Happens if $\Gamma t > 1$, otherwise not

End of Material for Cosmology

