Cosmology in the Unknown Particle Physics Inspired Ideas Limits of Experimental Physics

- We have <u>very</u> limited experience about particle physics above the electroweak scale
- For example, the most powerful collider in the world is the Large Hadron Collider
 - Protons hitting protons at 7 TeV + 7 TeV
- Protons are <u>not</u> fundamental
 - They contain a combination of three quarks plus some gluons
 - Optimistically, the quarks might carry ~ 2 TeV of energy each
- As they collide, they can produce particles of energy up to $\sim 4 \text{ TeV}$
 - This corresponds to temperatures of $k_B T$ up to $\sim 1.3 \text{ TeV}$
- Cosmic rays hit the Earth at <u>much</u> higher energy
- But these are rare and difficult to study directly
- Anything above temperatures of about 1.5 TeV have <u>not</u> been tested by experiment

Sources of Inspiration

- No one thinks the standard model is the final answer on particle physics
- Many promising ideas have developed because of developments in particle physics
- Sometimes, these developments *should* have cosmological consequences
 - In some cases, we can learn about particle physics by studying these consequences
- The early universe can reach much higher energies than we can ever achieve in the laboratory
- There are also some unsolved problems in cosmology
- Sometimes, we can use the ideas *already* developed in particle physics to see if they can solve our cosmology problem
 - Sometimes, this seems very forced
- Other times, new ideas in particle physics are thought up in hopes of solving cosmological problems

Supersymmetry

- In conventional particle physics, fermions and bosons are fundamentally different
 - And never the twain shall meet
- In a hypothesis called *supersymmetry*, fermions and bosons are interrelated

• There must be a *superpartner* for every particle:

- Supersymmetry also helps solve a problem called the *hierarchy problem*
 - But only if it doesn't happen at too high an energy
- If supersymmetry is right, then scale of supersymmetry breaking probably around

$$k_B T = 500$$
 GeV er so. $k_B T = 1.5$ TeV or so.

- If this is right, the LHC should discover it
- If supersymmetry is right, then we must revise upwards our estimate of where it happens

Complete list of superpartners discovered at the Large Hadron Collider:

1.

The Lightest Superpartner

- When would supersymmetry become relevant?
 - Assume supersymmetry breaking scale around 1.5 TeV

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2 = \frac{2.42 \text{ s}}{\sqrt{106.75}} \left(\frac{\text{MeV}}{1.5 \times 10^6 \text{ MeV}}\right)^2 \approx 10^{-13} \text{ s}$$

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events
$10^{-13}\mathrm{s}$	1.5 TeV	Supersymmetry Breaking
$10^{-11}\mathrm{s}$	160 GeV	Electroweak Symmetry Breaking

- Most variations of supersymmetry assume that supersymmetric particles can only be created or destroyed in pairs
 - Guaranteed by something called *R*-parity

- $e^- + e^+ \longleftrightarrow \tilde{\gamma} + \tilde{\gamma}$
- If this is true, then the lightest superpartner (LSP) must automatically be stable
- Such a particle could be the dark matter
 - More on this later

Grand Unification Theories (GUT's)

- In the standard model, there are three fundamental forces, and three corresponding coupling constants
- These have rather different values
- But their strength changes as you change the energy of the experiment, theoretically
- How much they change depends on whether supersymmetry is right or not
- If supersymmetry is right, then at an energy of about 10^{16} GeV, the three forces are equal in strength
- At $k_BT = 10^{16}$ GeV, there will be another phase transition the Grand Unification transition

$$t = \frac{2.42 \text{ s}}{\sqrt{210}} \left(\frac{\text{MeV}}{10^{19} \text{ MeV}} \right)^2 \approx 10^{-39} \text{ s}$$

Baryogenesis might occur at this scale

Scale could be right for inflation

Inflation

How Flat Was the Universe?

- The universe today is very nearly flat:
- How flat was it in the past?
- Recall the Friedman equation:
- The radiation fraction Ω_r is defined as
- The curvature (the last term) is given by
- Taking the ratio of these equations, we have
- Recall that radiation scales as a^{-4}
- So it all scales approximately, as T^{-2}
 - Not exactly, due to reheating

$$\Omega = 0.9993(37)$$

$$H^2 = \frac{8\pi}{3}G\rho - \frac{k}{a^2}$$

$$H^2\Omega_r = \frac{8\pi}{3}G\rho_r$$

$$\frac{k}{a^2} = \frac{8\pi}{3}G\rho - H^2 = H^2(\Omega - 1)$$

$$\frac{\Omega - 1}{\Omega_r} = \frac{3k}{8\pi G \rho_r a^2} \propto a^2 \propto T^{-2}$$

The Flatness Problem

• When you include all the corrections for reheatings, you get

$$\frac{\Omega - 1}{\Omega_r} \propto \frac{1}{T^2}$$

$$\frac{\Omega - 1}{\Omega_r} = \left(\frac{3.91}{g_{\text{eff}}}\right)^{2/3} \left(\frac{k_B T_0}{k_B T}\right)^2 \left(\frac{\Omega - 1}{\Omega_r}\right)_0$$

- For definiteness, pick $g_{\text{eff}} = 200$ and $k_B T = 3 \times 10^{15} \text{ GeV}$
- Current values
- In the early universe expect $\Omega_r = 1$

$$\Omega_0 = 0.9993(37)$$

 $\Omega_{r0} = 9 \times 10^{-5}$
 $T_0 = 2.7255 \text{ K}$

• So we find

- You should memorize this value to about 55 digits or so
- How did it happen to be so close to 1?

The Horizon Problem

- The universe looks pretty uniform today
- The universe used to be smaller
 - Could it have been smoothed out in the past?
 - Let's look at the universe at the time of Grand Unified scale ($k_BT = 10^{16} \text{ GeV}$):
- At the time the universe was about 10⁻³⁹ seconds old
- Universe then *could be* smooth on scales of about

$$d = 2ct = 2(3 \times 10^8 \text{ m/s})(10^{-39} \text{ s}) = 6 \times 10^{-31} \text{ m}$$

- Since then, the universe has grown *immensely* in size
- Assume *aT* is roughly constant (not exactly)

$$\frac{a_0}{a} = \frac{k_B T}{k_B T_0} \left(\frac{g_{\text{eff}}}{3.91}\right)^{1/3} = \frac{10^{25} \text{ eV}}{\left(8.617 \times 10^{-5} \text{ eV/K}\right) \left(2.725 \text{ K}\right)} \left(\frac{200}{3.91}\right)^{1/3} \approx 1.6 \times 10^{29}$$
The universe today could be smooth on scale of:
$$d_0 = \frac{a_0 d}{a} \approx 0.1 \text{ m}$$

- So universe today could be smooth on scale of:
- Actual universe today smooth on scale of:

$$d \approx 3.3ct_0 \approx 4 \times 10^{26} \text{ m}$$

The Origin of Structure Problem

Where did all this variation come from?

The Solution: Inflation

- How can we get Ω to be close to one at some point in the past?
- Recall,

$$\frac{\Omega - 1}{\Omega} \sim \frac{k/a^2}{\rho}$$

- Since ρ falls faster than $1/a^2$, as universe expands, Ω is driven away from 1
- If ρ fell slower than $1/a^2$, as universe expands, Ω would be driven towards 1
- Could there have been a period when universe dominated by vacuum in the past?
- Need some field that is stuck in "wrong place" "false vacuum"
- Friedmann Equation:

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3} G \rho_{\Lambda} \equiv H_{\Lambda}^2$$
$$a(t) \propto e^{H_{\Lambda}t}$$

$$a(t) \propto e^{H_{\Lambda}t}$$

False Vacuum, Early Universe

The Inflationary Era

• Assume inflation occurs around the Grand unified scale, $v = 10^{16} \text{ GeV}$

$$H_{\Lambda}^{2} = \frac{8}{3}\pi G \rho_{\Lambda}$$
$$a(t) \propto e^{H_{\Lambda}t}$$

$$\rho_{\Lambda} \sim \frac{v^4}{10(\hbar c)^3 c^2} = \frac{\left(10^{25} \text{ eV}\right)^4 \left(1.602 \times 10^{-19} \text{ J/eV}\right)}{10\left(1.97 \times 10^{-7} \text{ eV} \cdot \text{m}\right)^3 \left(3 \times 10^8 \text{ m/s}\right)^2} = 2.33 \times 10^{83} \text{ kg/m}^3$$

• During inflation, Hubble's constant is:

$$H_{\Lambda} = \sqrt{\frac{8}{3}\pi G \rho_{\Lambda}} = \sqrt{\frac{8}{3}\pi \left(6.67 \times 10^{-11} \text{ m}^3/\text{kg/s}^2\right) \left(2.33 \times 10^{83} \text{ kg/m}^3\right)} = 1.1 \times 10^{37} \text{ s}^{-1}$$

- Universe increases by factor of e every 10^{-37} s or so
- We are <u>not</u> radiation dominated, so we can't trust radiation era formulas

$$t \neq \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

How Much Inflation Do We Need?

- During inflation, Ω is driven towards one
- $\Omega 1$ at GUT scale is less than 10^{-55}
- We need a to increase by about 10^{27}

$$\frac{\Omega - 1}{\Omega} \sim \frac{k/a^2}{\rho} \propto a^{-2}$$

- At GUT scale, universe was smooth on scale that becomes *at most* 0.1 m today
- Today universe is smooth on scale of at least 10^{27} m
- We need a to increase by at least 10^{28}

$$a(t) \propto e^{H_{\Lambda}t}$$
 $e^{H_{\Lambda}t_I} > 10^{28}$ $H_{\Lambda}t_I > \ln(10^{28}) = 65$

• Probably want 100 or so *e*-foldings of growth

$$t_I > 100 H_{\Lambda}^{-1} = 10^{-35} \text{ s}$$

- If it is any number significantly bigger than the minimum required, then
 - $\Omega = 1$ to many more digits than we need at GUT scale
 - $\Omega = 1$ today to *many* digits
 - Universe is smooth on scales *much* bigger than we can see

More Comments on Inflation

- During inflation, the universe expands by at least factor of 10^{28}
- If there is anything besides vacuum, it is getting red shifted like crazy

$$T \propto a^{-1}$$

$$T \propto a^{-1}$$
 $T_{\rm end} < T_{\rm begin} 10^{-28}$

$$k_B T_{\rm end} < 10^{-28} \cdot 10^{16} \text{ GeV}$$

$$T_{\rm end} < 10 \, \, \mathrm{K}$$

- Completely ignore radiation
- Anything else in the universe also is diluted and disappears

$$n \propto a^{-3}$$

$$n_{\rm end} < 10^{-84} n_{\rm begin}$$

By the time inflation is over, any record of previous universe is effectively erased

Density Fluctuations from Inflation

- During inflation, you could think universe is very smooth
- On microscopic scales, universe will have tiny density fluctuations, thanks to quantum mechanics
- The size and magnitude of these fluctuations can be calculated
 - Gaussian, distribution, for example

- In size, these are so small they would be irrelevant
 - Except the universe is inflating!
- Little fluctuations grow up to be big fluctuations
- Constant new fluctuations are appearing at all scales
- During inflation: predict "scale invariant" density perturbations
 - "Spectral index" n = 1

Exiting Inflation and Reheating

- Universe must make transition to true vacuum Old inflation picture:
- It quantum tunnels from false vacuum to true
- It oscillates back and forth around true
- Oscillations generate all kinds of particles
 - Reheating

$$\rho_{\Lambda} \to \rho_{r}$$

$$\frac{\pi^{2}}{30} g_{\text{eff}} \frac{(k_{B}T)^{4}}{(\hbar c)^{3} c^{2}} = \frac{v^{4}}{10(\hbar c)^{3} c^{2}} \qquad k_{B}T_{r} = v \left(\frac{10}{\pi^{2} g_{\text{eff}}}\right)^{1/4}$$

$$k_B T_r = v \left(\frac{10}{\pi^2 g_{\text{eff}}}\right)^{1/4}$$

$$k_B T_r \approx \frac{1}{4} v$$

- Baryogenesis must occur after inflation ends
 - Otherwise any baryons would just inflate away
- We re-enter radiation era, but with t a little increased because of inflationary era

<u>Event</u>	$\underline{k_B T}$ or T	<u>Time</u>
Inflation begins	$1\overline{0}^{16}$ GeV	10^{-39} s
Inflation ends, baryons created,	etc. 10^{15} GeV	10^{-35} s

Inflation is Dead. Long Live Inflation!

- The problem it's hard to quantum tunnel
- It will only occur *very rarely*
- It will occur at one place
 - Bubble nucleation
- All the energy is on the walls of the expanding bubble
- If bubbles collided, we could get reheating
 - But universe expands so fast, bubbles never find each other

- The solution: change the potential
- No quantum tunneling needed
- "Slow roll" potentials
- Whole universe moves to minimum at same time

Too Many Kinds of Inflation

- Many *many* variations on inflation have since been explored
 - Slow Roll inflation
 - Chaotic inflation
 - Designer inflation
- We don't know which (if any) of these are correct

Generic features of modern inflation:

- Universe "slows down" just before exiting inflation
- Expansion not so fast at the end
- Small fluctuations don't grow quite so big
- Fluctuation spectrum has more power at smaller scales
 - Not quite scale invariant
 - Spectral index just under 1

Density Fluctuations Why We Need Them

- If the universe were *perfectly* uniform, then how come the microwave background isn't uniform?
- Where did all the structure (galaxies, clusters, etc.) come from?
- Can we understand where these variations come from?
- Can we explain how these variations led to the structures we see?

Review: Spherical Harmonics

- The temperature is a function of angle only
- The spherical harmonics are a series of functions of angle only
 - Taught about them in PHY 215 and other courses
- There are an infinite number of them
 - l = 0, 1, 2, 3, ...
 - m = -l, -l+1, ..., l
- The smaller indices represent functions that vary slowly with angle, the larger ones vary more quickly
- For example, the ϕ dependence depends on m
- The angular scale at which the function changes sign is, crudely,
 - This could be based on changes in θ or ϕ
- Any function that depends only on angle can be written as a linear combination of spherical harmonics
- The coefficients C_{lm} contain the same information as the function $T(\theta, \phi)$

$$T(\theta,\phi)$$

$$Y_{lm}\left(heta,\phi
ight)$$

$$Y_{lm}(\theta,\phi) \propto e^{im\phi} = \cos(m\phi) + i\sin(m\phi)$$

$$\theta pprox rac{\pi}{l}$$

$$T\left(heta,\phi
ight) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} Y_{lm}\left(heta,\phi
ight)$$

How to Describe the Fluctuations

• When you rotate the coordinates, you change Y_{lm} spherical harmonics into others with the same value of l but different values of m

$$T(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} Y_{lm}(\theta,\phi)$$

- The coefficients C_{lm} get mixed within different values of m when you rotate
 - Exact values of C_{lm} depends on choice of axes
- But, if you sum up the C_{lm} 's over fixed l, the total is independent of m, depends only on l
- So the information about how much variation on each angular "scale" is contained in

$$\left\langle C_l^2 \right\rangle = \frac{1}{2l+1} \sum_{m=-l}^{l} \left| C_{lm} \right|^2$$

- Plot the result as a function of *l*
 - Dots are the data, solid is the fit
- How do we explain all these features?

Growth of Density Pertubations

- Assume inflation, or some other source, produces density perturbations at all scales
 - Spectral index = 1, or slightly less than 1
 - A bit more "power" at small scales than at large

Now, we need to discuss what happens at all possible scales during four eras:

- Radiation dominated era: z > 3000
- Matter domination before recombination: 1100 < z < 3000
- Post recombination: 10 < z < 1100
- Structure formation: z < 10

The cosmic microwave background shows us the universe at recombination

Coupling in the Different Eras:

- The dark matter probably doesn't collide with anything
 - It will do its own thing
 - It is moving slowly and has little thermal pressure
- Neutrinos move nearly at the speed of light
 - As soon as they can, they simply erase any structure
 - Ignore them from now on

Everything else moves together before recombination:

- The baryons collide with electrons (Coulomb scattering)
- The photons collide with electrons (Thomson scattering)
- The baryons, photons, and electrons all move together
- The photons provide the lion's share of the pressure

After recombination, the atoms decouple from the photons

• The pressure drops effectively to zero

The Radiation Era: What Happens

- Suppose we have a perturbation (say, a high density region) during this era:
- Inflation predicts: every type of particle will have higher density in this region

Radiation
Dark Matter
Baryons/Atoms

- Photons try to flow from high density to low density
- They move at speed of light
- When size of perturbation equals about *ct*, it gets wiped out
 - Actually, they oscillate, more on this later

• The baryons *also* get wiped out, because they are caught with the photons

- The dark matter stays behind, and gravity starts to gather it more
 - But very slowly, because radiation dominates

Matter Domination, Before Recombination

- As before, the photons and baryons flow from high to low density as soon as they are able
 - Actually, they oscillate, as I'll explain soon
- However, now the dark matter dominates
- Gravity causes high density regions to get higher density
- They start to form structures
- These structures will become galaxies, etc.
- We see the microwave background from the *end* of this era
 - We don't see large density perturbations from this era
- We are looking only at the photons (coupled to baryons)

Radiation
Dark Matter
Baryons/Atoms

Acoustic Modes

- Before recombination: The photons and baryons are all coupled together
- Consider regions of alternating high density/low density:

- High density regions try to flow to low density
- This creates a sound wave, just like an ordinary sound wave
- This process stops at recombination
 - We catch the wave, frozen at that moment of time

Acoustic Modes and Scales

Where will we catch the wave at recombination? It depends on wavelength

- Longest wavelength: It hasn't had time to even cycle at all
 - Relatively little "power" at largest scales
- Next longest: It will be right at its first peak in oscillation cycle
 - This will be sensitive to Ω
- Slightly longer: Wave is at a node, or minimum
- Longer still: The second peak
 - Wave has oscillated, it is now at anti-node
 - Baryons feel gravity of dark matter, and resist (baryon drag)
 - Sensitive to $\Omega_{\rm b}$

Where Will the First Peak Be? (1)

• This is a wave that has only gone through about a third of a cycle

$$\frac{1}{3}\lambda \approx v_s t \qquad v_s = \sqrt{\frac{P}{\rho}} = \sqrt{\frac{\frac{1}{3}u}{u/c^2}} = \frac{c}{\sqrt{3}}$$

$$\lambda = \sqrt{3} (3 \times 10^8 \text{ m/s}) (3.8 \times 10^5 \text{ y}) (3.16 \times 10^7 \text{ s/y})$$

= 6.24 × 10²¹ m

• This scale has since grown to about

$$\lambda_0 = \lambda (1 + z_*) = 1092 (6.24 \times 10^{21} \text{ m}) = 6.81 \times 10^{24} \text{ m}$$

- The distance to this wave is now about
- The angular size of the wave is then

$$\theta = \frac{\lambda_0}{d} = \frac{6.81 \times 10^{24} \text{ m}}{4.4 \times 10^{26} \text{ m}} = 0.015$$

$$d \approx 3.3ct_0 \approx 4.4 \times 10^{26} \text{ m}$$

$$l = \frac{\pi}{\theta} \approx 210$$

More precise analysis says peak should be at l = 220

Where Will the First Peak Be? (2)

All calculations assumed standard cosmological values

l = 220

- Including $\Omega = 1$
- There are *many* effects that change this, most notably, the curvature of spacetime
- In flat space, $\Omega = 1$, we used the correct distance/angle relationship
- If $\Omega > 1$, then curvature of universe will make angular size appear bigger
- If Ω <1, then curvature of universe will make angular size appear smaller

- By measuring actual position of peak, we can estimate Ω
 - This is the primary source of the information that $\Omega = 1.00$

Matter Domination, After Recombination

- Photons completely decouple, they become completely smooth
- Any dark matter high density regions will gather baryons
 - These regions quickly become high density again
- These regions continue to grow more and more massive
- Throughout all these periods (up to now) these regions are continuing to grow with the rest of the universe in physical size

Radiation
Dark Matter
Baryons/Atoms

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B \underline{T}$	Events			
10^{-43} s	$10^{18} \overline{\text{GeV}}$	Planck Era; time becomes meaningless?			
$10^{-39} s$	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified			
$10^{-35} s$	$10^{15} \mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)			
10 ⁻¹³ s	1500 GeV	Supersymmetry breaking, LSP (dark matter)			
10^{-11} s	160 GeV	Electroweak symmetry breaking			
14 μs	150 MeV	Quark Confinement			
0.4 s	1.5 MeV	Neutrino Decoupling			
1.5 s	0.7 MeV	Neutron/Proton freezeout			
20 s	170 keV	Electron/Positron annihilation			
200 s	80 keV	Nucleosynthesis			
57 ky	0.76 eV	Matter-Radiation equality			
370 ky	0.26 eV	Recombination			
600 My	30 K	First Structure/First Stars			
13.8 Gy	2.725 K	Today			

Structure Formation

Up to now, the density fluctuations have been assumed small

 $\delta \rho / \rho \ll 1$

• As universe expands, can show in general that

But the density itself is falling as

 $\rho \propto a^{-3}$

 $\delta \rho \propto a^{-2}$

• Therefore,

$$\delta \rho / \rho \propto a$$

- Eventually, the perturbation becomes large (non-perturbative)
- To some extent, must rely on computer simulations

Qualitatively:

- Collapses in some direction first
- Then it fragments
- Fragments fragment further
- Form successively smaller structures

Which Structures Form First?

- For "scale invariant" density perturbations, all scales start about the same
 - But inflation implies smaller structures have a slight advantage
- During radiation era, smaller structures can grow a little
 - Another slight advantage for small structures
- Structures larger than the size of the universe *ct* at matter/radiation equality have a big disadvantage
 - This sets the largest scales at which structures form
 - This is a homework problem
- There is also a smallest structure that can form, set by the Jeans Mass
 - When pressure overcomes gravity
 - Homework problem
- Conclusion smallest structures form first, but not by a lot
 - Globular Clusters/Dwarf Ellipticals around z = 8 12
 - Galaxies/quasars/etc. around z = 5-8
 - Galaxy Clusters around z = 2-5
 - Galaxy Superclusters around z = 0-2

Cosmological Parameters (1)

- We have three independent ways of estimating cosmological parameters
 - Cosmic background
 - Structure in the current universe
 - Supernovae red shift
- Collectively, these give lots of independent information
- The fact that these all work *consistently* together tells us we are on the right track
 - And note that $\Omega = 1$
- To extract the *best* values, do a full fit to *everything* simultaneously
- Indications are that inflation (especially not quite scale invariant structure) yields best fit
- *Most* cosmologists now think inflation is right

$$n_s = 0.9665 \pm 0.0038$$

Cosmological Parameters (2)

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$\Omega_{\mathrm{b}}h^{2}\dots\dots$	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{\rm c}h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{MC}$	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	0.0544 ± 0.0073	0.0561 ± 0.0071
$ln(10^{10}A_s)$	3.040 ± 0.016	$3.018^{+0.020}_{-0.018}$	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
<i>n</i> _s	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
$H_0 [\mathrm{km s^{-1} Mpc^{-1}}] . .$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.679 ± 0.013	0.699 ± 0.012	$0.711^{+0.033}_{-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
Ω_{m}	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m}h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	$0.1404^{+0.0034}_{-0.0039}$	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\mathrm{m}}h^{3}$	0.09589 ± 0.00046	0.09635 ± 0.00051	$0.0981^{+0.0016}_{-0.0018}$	0.09633 ± 0.00029	0.09633 ± 0.00030	0.09635 ± 0.00030
σ_8	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} .$	0.840 ± 0.024	0.794 ± 0.024	$0.781^{+0.052}_{-0.060}$	0.834 ± 0.016	0.832 ± 0.013	0.825 ± 0.011
$\sigma_8\Omega_{ m m}^{0.25}$	0.611 ± 0.012	0.587 ± 0.012	0.583 ± 0.027	0.6090 ± 0.0081	0.6078 ± 0.0064	0.6051 ± 0.0058
Zre · · · · · · · · · · · · · · · · · · ·	7.50 ± 0.82	$7.11^{+0.91}_{-0.75}$	$7.10^{+0.87}_{-0.73}$	7.68 ± 0.79	7.67 ± 0.73	7.82 ± 0.71
$10^{9}A_{s}$	2.092 ± 0.034	2.045 ± 0.041	2.116 ± 0.047	$2.101^{+0.031}_{-0.034}$	2.100 ± 0.030	2.105 ± 0.030
$10^9 A_8 e^{-2\tau}$	1.884 ± 0.014	1.851 ± 0.018	1.904 ± 0.024	1.884 ± 0.012	1.883 ± 0.011	1.881 ± 0.010
Age [Gyr]	13.830 ± 0.037	13.761 ± 0.038	13.64+0.16	13.800 ± 0.024	13.797 ± 0.023	13.787 ± 0.020
Z*	1090.30 ± 0.41	1089.57 ± 0.42	1087.8+1.6	1089.95 ± 0.27	1089.92 ± 0.25	1089.80 ± 0.21
r _* [Mpc]	144.46 ± 0.48	144.95 ± 0.48	144.29 ± 0.64	144.39 ± 0.30	144.43 ± 0.26	144.57 ± 0.22
$100\theta_*$	1.04097 ± 0.00046	1.04156 ± 0.00049	1.04001 ± 0.00086	1.04109 ± 0.00030	1.04110 ± 0.00031	1.04119 ± 0.00029
Zdrag · · · · · · · · · · · ·	1059.39 ± 0.46	1060.03 ± 0.54	1063.2 ± 2.4	1059.93 ± 0.30	1059.94 ± 0.30	1060.01 ± 0.29
r _{drag} [Mpc]	147.21 ± 0.48	147.59 ± 0.49	146.46 ± 0.70	147.05 ± 0.30	147.09 ± 0.26	147.21 ± 0.23
$k_{\rm D} [{\rm Mpc^{-1}}] \ldots .$	0.14054 ± 0.00052	0.14043 ± 0.00057	0.1426 ± 0.0012	0.14090 ± 0.00032	0.14087 ± 0.00030	0.14078 ± 0.00028