The Going Gets Weird Creation of the Universe Relying on Theory Now

- We have a consistent picture of history of the universe back to the start of inflation
 - Assumed to occur around $k_BT = 10^{16}$ GeV, $t \sim 10^{-39}$ s
- This is also the scale at which grand unified theories (GUTs) become relevant
- We have unified three of the forces: Strong, Electromagnetic, and Weak
- Any signature of times before this gets wiped out due to inflation
 - All particle densities get reduced to near zero
 - Any curvature gets inflated away
 - Any inhomogeneities disappear due to inflation
- We are relying <u>completely</u> on theory

Outline of History of Universe

<u>Time</u>	\underline{T} or $k_B\underline{T}$	<u>Events</u>
10^{-43} s	$10^{18}\mathrm{GeV}$	Planck Era; time becomes meaningless?
10^{-39} s	$10^{16}\mathrm{GeV}$	Inflation begins; forces unified
$10^{-35} s$	$10^{15} \mathrm{GeV}$	Inflation ends; reheating; forces separate; baryosynthesis (?)
10^{-13} s	1500 GeV	Supersymmetry breaking, LSP (dark matter)
10^{-11} s	160 GeV	Electroweak symmetry breaking
14 µs	150 MeV	Quark Confinement
0.4 s	1.5 MeV	Moutring Decoupling
		Neutrino Decoupling
1.5 s	0.7 MeV	Neutron/Proton freezeout
20 s	170 keV	Electron/Positron annihilation
200 s	80 keV	Nucleosynthesis
<i>57</i> 1	0.76 -11	Matter De dietien en elite
57 ky	0.76 eV	Matter-Radiation equality
370 ky	0.26 eV	Recombination
600 My	30 K	First Structure/First Stars
13.8 Gy	2.725 K	Today

Quantum Gravity

- Straightforward attempts to include gravity in with the other theories are largely unsuccessful
 - Standard approaches are perturbative
 - Gravity appears to be inherently non-perturbative
- At low energies, gravitational forces between objects are completely irrelevant compared to other forces
 - Upcoming homework problem
- But as the energies get very large, gravity becomes stronger
 - Same homework problem
- Around 10¹⁸ GeV, the gravitational coupling becomes "strong"
- At this point, if not before, we need a quantum theory of gravity
 - The Planck Era
- A quantum theory of gravity would have quantum effects that influence the particles in spacetime, but also the very structure of spacetime itself
- Sometimes, our words to describe things start to break down

Some Ideas for Quantum Gravity

- We have two theories that seem to incorporate quantum mechanics and gravity consistently
- *String theory*, now sometimes called *M theory*, says that all particles are actually tiny loops of a single fundamental string
 - Different particles correspond to different vibration modes on the strings
- Only works in ten spacetime dimensions
 - Not necessarily a problem, in that extra dimensions could be "compactified," curled up into a tiny ball
- Loop quantum gravity is a theory where there is no space or time, just "events" with no definite separation
- Time steps shorter than the Planck scale are meaningless
- The dimensionality of spacetime must somehow arise spontaneously from these fundamental interactions
- At present, neither theory has produced <u>any</u> predictions that can be checked against experiment

The Planck Era

- Assume the universe is still radiation dominated
- Substituting the energy 10^{18} GeV, this would be at $t \approx 10^{-43}$ s

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2$$

- This is only about a factor of 100 in energy above the start of inflation
 - Given the sloppiness of our estimates, there may be little or no gap between the Planck era and inflation

- Some complicated possibilities:
- Whole universe might be inflating, with only little pockets escaping to make universe
- Entire universe might quantum tunnel from nothing
- Time might become meaningless
- Universe may have had a "bounce" at the Big Bang

Chaotic Inflation/Eternal Inflation

- Universe may have begun in inflationary era, everywhere
 - Everything is expanding, very fast, everywhere
- A small pocket manages to escape and start forming a universe
 - We'll have to get slow roll, or something, to make it continue inflating enough
- This pocket grows to make observable universe
- There will be other bubble universes that form
- Different bubbles will not collide the universe is expanding too fast
- It is quite possible that there is more than one way to escape from inflation
- Different "universes" could have different fundamental constants
- Only a few of them may have intelligence
- The vast majority of the universe is always inflating

The String Landscape:

- String theory is *incredibly* complex
 - No one understands it
- Just like in the electroweak theory, the minimum (the vacuum) can be non-trivial
- However, the potentials (which determine those minima) are effectively infinite dimensional
- The number of minima which determines the apparent laws of physics is very, very large
 - The "String Landscape"
- There may be many, many minima
 - Many possible universes with apparently different laws of physics
 - Some estimates give $\sim 10^{100}$ to 10^{1000} possibilities

The Ultimate Free Lunch

- Around the time of the Planck Era, particles have energies around $E = 3k_BT = 3 \times 10^{18} \text{ GeV}$
- The age of the universe is 10^{-43} s
- Multiplying these numbers, we have $Et = (3 \times 10^{18} \text{ GeV})(10^{-43} \text{ s}) \approx 0.46 \hbar$
- According to quantum mechanics, you can violate conservation of energy, provided

$$(\Delta E)(\Delta t) < \frac{1}{2}\hbar$$

- You can create these particles out of nothing!
- It is quite possible that we can create the whole universe out of nothing!
- Even spacetime itself is created
- There isn't even spacetime before the big bang; there's no space or time

Quantum Uncertainty in Time?

- Under ordinary circumstances, events in time are pretty clearly ordered
 - Big Bang BEFORE Revolutionary War BEFORE Civil War BEFORE now
- In a quantum theory of gravity, spacetime should itself have random fluctuations on the Planck scale
 - Quantum foam structure of spacetime
 - Which events happen ambiguous on scale of 10⁻⁴³ s

- It therefore becomes meaningless on this scale to say which event caused which event
 - The universe could cause itself to come into existence

Big Bang or Big Bounce?

- One possibility that has been discussed extensively is that there was another era of the universe where it was collapsing before the big bang.
- This theory is called the Big Bounce

0.9

- But not necessarily inconsistent with quantum gravity
- In particular, this seems to be the current prediction of Loop Quantum Gravity
- I don't know (and not sure if anyone does) if the previous half of the universe represents a timereversed universe, where entropy increase backwards, or a more conventional universe where entropy increases forwards

For This May We Be Truly Thankful. . . Is the Universe Fine Tuned for Intelligence?

- The universe we see around us *should* be explainable in terms of just a few things
- The standard model of particle physics predicts how particles interact with each other
- These include 18 apparently arbitrary parameters
 - Lepton masses, quark masses, fundamental couplings, mixings
- In addition, there are some things in particle physics we don't know
 - Neutrino masses and mixings
- There also various cosmological inputs that we don't understand
 - Initial density, cosmological constant, etc.
- Some of these surprisingly favorable to life
 - Luck? Design?

Some Spurious Issues ...

- Many authors have pointed out how fortunate the Earth is that it allows life to exist
- Low mass stars produce deadly flares that could destroy life
- High mass stars live too short a time for life to evolve
- The Sun is just the right size
- Stars near the center of galaxies have too many unhealthy supernovae nearby
- Stars near the edge have too few "metals" to make life probably
- The Sun is in just the right zone
- Many stars have planets in eccentric orbits
 - Alternately cold and hot
- We got lucky fairly stable circular orbits
- With 10¹² stars in each of 10¹⁵ galaxies in the known universe, it is not surprising we occasionally get lucky
 - The chance that you win the lottery is small
 - The chance that *someone* wins the lottery is large
- Only those that win the intelligent life lottery question how they got so lucky

The Value of Ω

- We previously found that the value of Ω at the time of the GUT scale is close to 1
- What would have happened if this were not the case?
- If $\Omega_{GUT} > 1 + 10^{-52}$, universe would reach peak size and then recollapse to a point
- If $\Omega_{GUT} < 1 5 \times 10^{-51}$ then universe would grow too diffuse for structure to form
- But our value is just right

$$\Omega_{GUT} = 1 + (-3 \pm 18) \times 10^{-56}$$

Should We Take This Coincidence Seriously?

- We need: $-5 \times 10^{-51} < \Omega_{GUT} 1 < 10^{-52}$
- We have: $\Omega_{GUT} 1 = (-3 \pm 18) \times 10^{-55}$

- This is far better tuned than we need to produce intelligent life
 - Suggests that *something* caused this to happen
 - I am *not* suggesting that this agent is necessarily intentional
- Indeed, we have a theory that naturally *predicts* this result
 - Inflation
 - And other theories I don't know as much about

• Odds are the flatness of the universe is *not* a lucky coincidence

The Value of ρ_{Λ}

- The mass density of empty space ρ_{Λ} is technically a subject for particle physics
- This number could be any number between $-\infty$ and $+\infty$
- If $\rho_{\Lambda} > +500 \text{ u/m}^3$, the universe would begin exponential growth before structure formation
- If $\rho_{\Lambda} < -2$ u/m³, universe reaches maximum size and then collapses before now
- Actual value is $\rho_{\Lambda} = 3.4 \text{ u/m}^3$

- We have no idea what the value of ρ_{Λ} "should be"
- Therefore it's hard to tell how "lucky" this is

What Can Particle Physics Predict for ρ_{Λ} ? (1)

• Recall, for example, the formula for the energy density of the electromagnetic radiation

- $u = 2\int_0^\infty \frac{4\pi k^2 dk}{\left(2\pi\right)^3} \hbar \omega n_k$
- The factor n_k is the number of photons in the state with wave number **k**
- Though it's not obvious, each photon state is really a harmonic oscillator
- The states for the harmonic oscillator have energy

$$E = \hbar\omega \left(n + \frac{1}{2} \right)$$

- We have missed the ½ term
 - Normally ignored, since the zero of energy is irrelevant
 - But not irrelevant when considering gravity
- There is a contribution to the energy that exists even for empty space
 - Zero point energy
- This leads to a contribution to the mass density in empty space

$$u = 2\int_0^\infty \frac{4\pi k^2 dk}{8\pi^3} \frac{1}{2}\hbar\omega$$

$$\rho_{\Lambda\gamma} = \frac{1}{c^2} \int_0^\infty \frac{k^2 dk}{2\pi^2} \hbar \omega = \frac{\hbar}{2\pi^2 c} \int_0^\infty k^3 dk$$

What Can Particle Physics Predict for ρ_{Λ} ? (2)

• This integral diverges, yielding infinity

$$\rho_{\Lambda\gamma} = \frac{\hbar}{2\pi^2 c} \int_0^\infty k^3 dk$$

- However, this assumes that the physics we understand works up to $E = \infty$
- We expect, at most, this to work up to the scale where we expect quantum gravity to cut in, the *Planck Energy*: $E_P \approx 10^{19} \text{ GeV}$

$$k_P = \frac{E_P}{\hbar c}$$

• So let's put in a corresponding cutoff in the scale:

$$\rho_{\Lambda\gamma} = \frac{\hbar}{2\pi^2 c} \int_0^{E_P/\hbar c} k^3 dk = \frac{\hbar}{8\pi^2 c} k^4 \Big|_0^{E_P/\hbar c} = \frac{E_P^4}{8\pi^2 \hbar^3 c^5} = 3.93 \times 10^{121} \text{ u/m}^3$$

- There are also contributions from other particles, $\rho_{\Lambda} = \rho_{\Lambda\gamma} + \rho_{\Lambda x} + \rho_{\Lambda 0}$ and, in principle, an arbitrary constant
- These other terms are in most cases unknown and may be of either sign

How Lucky Are We on ρ_{Λ} ?

$$\rho_{\Lambda} = (3.93 \times 10^{121} \text{ u/m}^3) + \rho_{\Lambda x} + \rho_{\Lambda 0}$$

• Actual value is:

$$\rho_{\Lambda} = 3.4 \text{ u/m}^3$$

• To make things work, we need

$$-2 \text{ u/m}^3 < \rho_{\Lambda} < 500 \text{ u/m}^3$$

- Smaller values generally work better
- Looks like we got lucky by about a factor of about 10^{120}
 - Like winning the lottery every day for three weeks
- Had the number been zero, it would be reasonable to imagine that it came about because of something *forcing* it to be zero
 - Much as inflation explains why the universe is nearly flat
- But there *may* be logical reasons why it is so small*
- Many ideas have been proposed; most are, at present, untestable

*Eric D. Carlson and W. Daniel Garretson, "Could there be Something Rather than Nothing?", *Phys. Lett.* **B315**, 232 (1993).

The Neutron-Proton Mass Difference

- The proton and neutron are very close in mass
- Suppose the neutron masses had been a little different?
- If the neutron mass were 0.79 MeV lower, then we would have $m_p + m_e > m_n$
- Hydrogen atoms would be unstable

$$p^+ + e^- \rightarrow n^0 + \nu$$

- After recombination, all the protons would disappear
- Stars, planets, etc., as we know them would not exist
- If the neutron mass were 1.44 MeV higher, then deuterium would be unstable
- Deuterium would not form in stars
- Nuclear fusion would not proceed

$$m_n = 939.57 \text{ MeV/}c^2$$

 $m_p = 938.27 \text{ MeV/}c^2$
 $m_e = 0.51 \text{ MeV/}c^2$

$$^{2}H \rightarrow p^{+} + p^{+} + e^{-} + \overline{\nu}$$

- Once again, it looks like we got lucky
- About 1 part in 1000 lucky

What Causes the Neutron-Proton Mass Difference?

- We now know protons and neutrons are actually made of quarks
- About 98% of the mass/energy of these particles comes from strong interactions
 - The same for protons and neutrons
- The remaining 2% comes from a combination of
- Up quark (~5 MeV) and down quark (~10 MeV) mass
- Electrostatic interactions
 - Favors the neutral neutron by about 4 MeV
- So, in round numbers, our neutron and proton masses are about

$$m_n = 939.57 \text{ MeV/}c^2$$

 $m_p = 938.27 \text{ MeV/}c^2$
 $m_e = 0.51 \text{ MeV/}c^2$
 $p^+ = [uud]$
 $n^0 = [udd]$

$$m_n c^2 \approx (918-4) \text{MeV} + 2m_d + m_u$$

 $m_p c^2 = (918+0) \text{MeV} + m_d + 2m_u$

- Hence the real question is why down minus up is between 4 and 6 MeV
 - And now it doesn't look so ridiculously lucky

The Importance of Carbon to Life

- Many elements are critical to life as we know it
- All life depends *critically* on H, C, N, O, S, P
 - And probably others

$$\begin{array}{c|c} H \\ N \\ N \\ \end{array}$$

$$\begin{array}{c|c} H \\ N \\ \end{array}$$

$$\begin{array}{c|c} Me \\ \end{array}$$

$$\begin{array}{c|c} N \\ \end{array}$$

A·T base pair

G·C base pair

- Hydrogen was produced in the big bang
- Carbon is produced in stars
- All other elements are made out of carbon

- Almost all complex chemicals contain carbon as a backbone element
 - Probably because of its four covalent bonds
- Not only is carbon critical to life on Earth, it is probably critical to almost any conceivable chemistry-based life

The Triple-\alpha Reaction is Hard

- Carbon is produced by the Triple- α interaction
- Step 1 produces unstable ⁸Be
- Step 2 produces ¹²C

$$^{4}\text{He} + ^{4}\text{He} + 91.8 \text{ keV} \rightarrow ^{8}\text{Be}$$

$$^{4}\text{He} + {^{8}\text{Be}} \rightarrow {^{12}\text{C}} + \gamma (7.367 \text{ MeV})$$

- The first step would be very difficult to do, except we are at high temperatures
 - $T \sim 2 \times 10^8$ K corresponds to $k_B T = 17.2$ keV
- Only the tininess of the energy required makes this conceivable
 - Normal nuclear interactions would involve several MeV of energy
- The second step *should* be heavily suppressed, because making the photon makes it difficult
- Based on the fact that ¹²C was produced in stars, Fred Hoyle predicted there must be an intermediate excited state with the correct energy
- It was shortly thereafter discovered

$$E(^{12}C^*) - E(^{12}C) = 7.65 \text{ MeV}$$

- This double coincidence allows carbon to be formed
- And hence life to exist

How Coincidental Is It?

$$^{4}\text{He} + ^{4}\text{He} + 91.8 \text{ keV} \rightarrow ^{8}\text{Be}$$

$$^{4}\text{He} + {^{8}\text{Be}} \rightarrow {^{12}\text{C}} + \gamma (7.367 \text{ MeV})$$

$$E(^{12}C^*)-E(^{12}C)=7.65 \text{ MeV}$$

- Is it such a big coincidence that ⁸Be is barely unstable?
- Not surprising that it's kind of close after all ⁸Be is mostly just a bound state of two ⁴He
- Is it such a big coincidence that there is a resonance near the right energy for ¹²C?
- This is hard to figure out, so we don't really know how to calculate the resonance energy
- But there are *several* other resonances, so we have several chances for a coincidence
- And the match is only 5% or so
 - Only a little lucky

Cosmic Philosophy

Is the Universe Fine Tuned for Intelligence?

- We have several apparent coincidences:
- Omega started ridiculously close to 1
 - Can be explained by inflation or other theories
- The density of empty space is very low
 - Not well explained, but there are some potential explanations
- The neutron/proton mass difference is right in the correct range
 - When you understand quarks, this is less coincidental than it appears
- The triple-alpha reaction seems to have two coincidences that make it work
 - Unclear how much of a coincidence this is
- There are others I don't know as much about ...
- Some of them we can already partly explain in terms of known physics
- Others we have potential explanations, but we don't know if they are right

What Remains to be Explained?

Things we've resolved:

- Why the universe has the fraction of hydrogen/helium, etc. we see
- The nature of the cosmological background radiation
- How all the structure in the universe formed from initial perturbations

Things we've got good guesses on:

- Where the dark matter came from
- Why $\Omega = 1$
- Why the universe is nearly uniform
- The likely causes of initial perturbations
- Why there's more matter than anti-matter in the universe

Things we don't really know:

- Where the universe came from
- Why the vacuum energy density is so low
- Why the various particle physics parameters are what they are

The Best of All Possible Worlds?

- If some of the parameters were very different than they are, then life as we know it would be impossible
- But for *some* of the parameters, some other type of intelligence might be possible
- For example, if parameters were different, maybe we could make ¹²C in primordial nucleosynthesis
 - Don't need to make it in stars

- The real question is, if we change these parameters a lot, would intelligence still form?
- Answering this would require redoing all of physics (and chemistry, and biology) from scratch
- We are not currently capable of doing it
- Bottom line for *many* of the parameters, we can't tell if they are fine tuned for life

Are These Variables Truly Variable?

- If there is truly *one* simple theory with no or few adjustable parameters, then it may be that the "coincidences" are inevitable
- As if math is fine tuned for life
- Until we have such a theory, we really can't say how coincidental these things are

The Anthropic Principle

- Science involves repeatable experiments
 - Other sciences, even history, can in principle be subject to verifiable predictions
- In the case of the universe as a whole, we only get *one* experiment to see if it produced intelligent life
 - We already know the answer
- And if it *didn't* produce life, we wouldn't even be asking the question
- Some philosophers suggest we should follow the *anthropic principle*:
 - "The anthropic principle is a philosophical consideration that observations of the Universe must be compatible with the conscious and sapient life that observes it."

Multiple Universes

- What do we mean by multiple Universes?
 - The *Universe* is the totality of existence that we are aware of or can be aware of us
 - If there are places that are real, but we can't see them, they are other Universes

Reasons to believe in multiple universes with different physical constants

- Chaotic/eternal inflation
 - Different portions of the universe may look very different
- Spontaneous appearance of multiple universe
 - If our universe came from nothing, why not others?
- Many Worlds Interpretation of quantum mechanics
 - If correct, then everything happens

Multiple Universes and the Anthropic Principle

- According to inflation, the universe is *much* bigger than the portion we can see
 - The number of stars could be much bigger then the known 10^{27} stars
- If life is super-rare, it doesn't matter, it's still inevitable
- In some pictures of inflation, there are a large or infinite number of "bubble universes" that escape from inflation
- The apparent laws of physics could be very different in each of them
- Recall that in string theory, for example, the number of possibilities could be huge
 - 10^{100} to 10^{1000} might be typical possibilities
- So intelligence might actually be very rare
- But only in those universes where there are intelligences do we wonder why the universe is fine-tuned for intelligence
- In this view, there is no surprise
 - Only universes where intelligence is possible are worthy of consideration

Spontaneous Creation of the Universe

- It is possible that the universe we see was created from nothing
 - Indeed, this seems likely
- If it happened once, it could happen again
 - The universes would not in any sense be connected, so they don't even have a time ordering
- No particular reason that the different universes would have the same physical constants

Quantum Mechanics and Probability

• In the everyday world, we think of probability as expressing our ignorance

Copenhagen Interpretation of Q. M.

- Some processes are inherently quantum uncertain
- All possibilities actually occur
- Until a measurement occurs

Many Worlds Interpretation of Q. M.

- All possibilities actually occur
- Even after a measurement occurs

 In many cases, the different possibilities become so disconnected, they effectively become separated universes

We are only cognizant of one

Do People Take This Seriously?

Many famous physicists, and a lot of obscure ones, believe in the Many Worlds Interpretation

Stephen Hawking

Murray Gell-Mann

Richard Feynman

World Expert on 11/11/11