Physics 712
 Chapter 11 Problems

1. We want to consider the effect of two boosts along the x-axis. The following hyperbolic identities will prove useful:

$$
\begin{aligned}
& \cosh \left(\phi_{1} \pm \phi_{2}\right)=\cosh \phi_{1} \cosh \phi_{2} \pm \sinh \phi_{1} \sinh \phi_{2}, \\
& \sinh \left(\phi_{1} \pm \phi_{2}\right)=\sinh \phi_{1} \cosh \phi_{2} \pm \cosh \phi_{1} \sinh \phi_{2},
\end{aligned} \quad \text { and } \quad \tanh \left(\phi_{1} \pm \phi_{2}\right)=\frac{\tanh \phi_{1} \pm \tanh \phi_{2}}{1 \pm \tanh \phi_{1} \tanh \phi_{2}} .
$$

(a) For two successive boosts with rapidity ϕ_{1} and ϕ_{2} find the equivalent rapidity $\phi_{\text {tot }}$.
(b) For two successive boosts with velocity v_{1} and v_{2} find the equivalent velocity $v_{\text {tot }}$.
2. Consider a particle moving along the x-axis whose 4 -velocity is given at proper time τ by $U^{\mu}=c(\cosh \phi, \sinh \phi, 0,0)$, where ϕ is an unknown function of time.
(a) Check that $U \cdot U=c^{2}$. Find the proper acceleration $a(\tau)$ at time τ for an arbitrary function $\phi(\tau)$.
(b) Suppose $a(\tau)=g$, a constant. Assuming the particle starts at the origin at $\tau=0$ and is initially at rest, find $\phi(\tau), U(\tau)$ and $x(\tau)$.
(c) How much proper time (in years) would it take to get to Alpha Centauri (4.3c•y), the center of our galaxy $\left(2.6 \times 10^{4} c \cdot y\right)$, or the edge of the visible universe $\left(4.5 \times 10^{10} c \cdot y\right)$ if you start at rest and accelerate in a straight line at proper acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$?
3. A pion (mass m_{π}) at rest decays to a muon (mass m_{μ}) and a neutrino (mass 0). Find the energies of the two final particles.
4. A particle of mass m and charge q is in the presence of constant electric and magnetic fields $\mathbf{E}=E \hat{\mathbf{x}}$ and $\mathbf{B}=B \hat{\mathbf{z}}$.
(a) Write out explicitly all four components of the equation for \dot{U}^{μ}, where dot stands for $d / d \tau$. Find an equation for \ddot{U}^{1}.
(b) What is the general solution for $U^{1}(\tau)$ if $E<c B$? Argue that it will exhibit periodic behavior (in τ), and find the period.
(c) Repeat part (b) if $E>c B$. Will it be periodic in this case?
5. Consider a line of charge with linear charge density λ arranged, in a primed frame, along the y^{\prime}-axis at rest. Write the electric field at all points in Cartesian coordinates in the primed frame. Now, consider a line of charge with the same linear charge density, parallel to the y axis, but this time moving in the $+x$ direction at velocity v. Find the electric and magnetic fields everywhere in the unprimed frame.

