Physics 712

Chapter 2 Problems

1. A point charge q is at the position $(x, y, z)=(0,0, h)$ above a grounded conducting plane at $z=0$. Find the potential everywhere. Find the electric field on the surface $z=0$, check that it is normal, and find the surface charge density σ on the surface. Integrate the charge density over the entire plane
2. A ring of charge of total charge q forms a circle of radius $2 a$ in the $x y$-plane around a conducting sphere of radius a. Find the potential and electric field everywhere along the z-axis for $z>a$ if the conducting sphere is (a) grounded (b) neutral.

3. Consider a square of side a with $\Phi=0$ on three sides and $\Phi=V$ on the surface $y=a$ in two dimensions. Our goal is to compute the potential everywhere, and particularly $\Phi\left(\frac{1}{4} a, \frac{1}{2} a\right)$. Write the potential in the form $\Phi(x, y)=\sum_{n=1}^{\infty} A_{n}(y) \sin (n \pi x / a)$. What is the form of the functions $A_{n}(y)$? By matching appropriate boundary conditions, determine any unknown coefficients, and find $\Phi(x, y)$ as an infinite sum. Sum it numerically to find $\Phi\left(\frac{1}{4} a, \frac{1}{2} a\right)$. Compare your results with the results of problem 1.7.
