Physics 712

Chapter 0 Solution

1. Consider the vector function $x /|x|^{3}$. By direction computation show that it has no curl for $x \neq 0$. By integrating it over a small spherical volume, show that it also has no curl for $\mathbf{x}=0$.

As in class, we first write the function in spherical coordinates, so that $\mathbf{x} /|\mathbf{x}|^{3}=\hat{\mathbf{r}} r^{-2}$. We then simply calculate the curl:

$$
\nabla \times\left(\frac{1}{r^{2}} \hat{\mathbf{r}}\right)=\hat{\boldsymbol{\theta}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(\frac{1}{r^{2}}\right)-\hat{\boldsymbol{\varphi}} \frac{1}{r} \frac{\partial}{\partial \theta}\left(\frac{1}{r^{2}}\right)=0 .
$$

So far so good! But we have to be careful at $r=0$, since the function is large there. We integrate the curl over a small region to give

$$
\int_{V} \nabla \times\left(\frac{1}{r^{2}} \hat{\mathbf{r}}\right) d^{3} \mathbf{x}=\int_{S} \hat{\mathbf{n}} \times\left(\frac{1}{r^{2}} \hat{\mathbf{r}}\right) d a=\frac{1}{r^{2}} \int_{S} \hat{\mathbf{r}} \times \hat{\mathbf{r}} d a=0
$$

Since the integral is zero, there is no need to add a delta function at zero. So $\nabla \times \frac{\mathbf{x}}{|\mathbf{x}|^{3}}=0$.

