Physics 712

Solutions to Chapter 11 Problems

2. [15] Consider a particle moving along the x-axis whose 4 -velocity is given at proper time $\tau \mathbf{b y} U^{\mu}=c(\cosh \phi, \sinh \phi, 0,0)$, where ϕ is an unknown function of time.
(a) Check that $U \cdot U=c^{2}$. Find the proper acceleration $a(\tau)$ at time $\boldsymbol{\tau}$ for an arbitrary function $\phi(\tau)$.

Trivially, $U \cdot U=c^{2} \cosh ^{2} \phi-c^{2} \sinh ^{2} \phi=c^{2}$. The four-acceleration is given by

$$
A^{\mu}=\frac{d}{d \tau} U^{\mu}=\left(c \sinh \phi \frac{d \phi}{d \tau}, c \cosh \phi \frac{d \phi}{d \tau}, 0,0\right)
$$

We then have

$$
a=\sqrt{-A \cdot A}=\sqrt{-c^{2}\left(\frac{d \phi}{d \tau}\right)^{2} \sinh ^{2} \phi+c^{2}\left(\frac{d \phi}{d \tau}\right)^{2} \cosh ^{2} \phi}=\sqrt{c^{2}\left(\frac{d \phi}{d \tau}\right)^{2}}=c\left|\frac{d \phi}{d \tau}\right|
$$

(b) Suppose $a(\tau)=g$, a constant. Assuming the particle starts at the origin at $\tau=0$ and is initially at rest, find $\phi(\tau), U(\tau)$ and $x(\tau)$.

Initially at rest means that at $\tau=0$ we have $U^{\mu}=(c, 0,0,0)$, or $\phi=0$. Assuming the absolute values is always positive, we now integrate the equation $c(d \phi / d \tau)=g$, and find

$$
\phi(\tau)=\frac{g}{c} \tau
$$

This can, of course, be substituted into the four velocity to yield

$$
U(\tau)=c(\cosh (g \tau / c), \sinh (g \tau / c), 0,0)
$$

Since $U^{\mu}=d x^{\mu} / d \tau$, we can integrate these equations to yield

$$
x(\tau)=\frac{c^{2}}{g}\left(\sinh \left(\frac{g \tau}{c}\right), \cosh \left(\frac{g \tau}{c}\right)-1,0,0\right)
$$

The constant of integration was chosen in each case to make sure $x(0)=(0,0,0,0)$.
(c) How much proper time (in years) would it take to get to Alpha Centauri (4.3 c•y), the center of our galaxy $\left(2.6 \times 10^{4} c \cdot y\right)$, or the edge of the visible universe $\left(4.5 \times 10^{10}\right.$ $c \cdot \mathbf{y}$) if you start at rest and accelerate in a straight line at proper acceleration $g=9.8$ $\mathrm{m} / \mathbf{s}^{2}$?

We simply let x be the distance to our object and solve for τ in each case.

$$
\begin{gathered}
x=\frac{c^{2}}{g}[\cosh (g \tau / c)-1], \\
\cosh \left(\frac{g \tau}{c}\right)=\frac{x g}{c^{2}}+1, \\
\tau=\frac{c}{g} \cosh ^{-1}\left(\frac{x g}{c^{2}}+1\right)=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \cosh ^{-1}\left(\frac{x}{c} \cdot \frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}+1\right) \\
=\frac{3.059 \times 10^{7} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}} \cosh ^{-1}\left(\frac{x}{c} \cdot \frac{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}}{3.059 \times 10^{7} \mathrm{~s}}+1\right)=(0.9693 \mathrm{yr}) \cosh ^{-1}\left(\frac{x}{0.9693 c \cdot \mathrm{yr}}+1\right) .
\end{gathered}
$$

We now simply substitute each of the distances into the formula to get the final answer:

$$
\begin{aligned}
& \alpha \text { Centauri: } \quad \tau=(0.9693 \mathrm{yr}) \cosh ^{-1}\left(\frac{4.3 c \cdot \mathrm{yr}}{0.9693 c \cdot \mathrm{yr}}+1\right)=2.305 \mathrm{yr}, \\
& \text { Center of Galaxy: } \quad \tau=(0.9693 \mathrm{yr}) \cosh ^{-1}\left(\frac{2.6 \times 10^{4} c \cdot \mathrm{yr}}{0.9693 c \cdot \mathrm{yr}}+1\right)=10.56 \mathrm{yr} \text {, } \\
& \text { Edge of Universe: } \quad \tau=(0.9693 \mathrm{yr}) \cosh ^{-1}\left(\frac{4.5 \times 10^{10} c \cdot \mathrm{yr}}{0.9693 \mathrm{c} \cdot \mathrm{yr}}+1\right)=24.48 \mathrm{yr} \text {. }
\end{aligned}
$$

