Physics 712

Solutions to Chapter 11 Problems

3. A pion (mass m_{π}) at rest decays to a muon (mass m_{μ}) and a neutrino (mass $\mathbf{0}$). Find the energies of the two final particles.

We first define the momenta in an obvious way, then we write conservation of fourmomentum as

$$
p_{\pi}=p_{\mu}+p_{v}
$$

If we solve for, say, the muon momentum, we have $p_{\mu}=p_{\pi}-p_{v}$. Dotting this into itself, we have

$$
p_{\mu} \cdot p_{\mu}=p_{\pi} \cdot p_{\pi}+p_{v} \cdot p_{v}-2 p_{\pi} \cdot p_{v}
$$

We replace all the dot products of the momenta with themselves by $p \cdot p=m^{2} c^{2}$, and we have

$$
m_{\mu}^{2} c^{2}=m_{\pi}^{2} c^{2}+0-2 p_{\pi} \cdot p_{v}
$$

The initial pion has momentum $p_{\pi}=\left(m_{\pi} c, 0,0,0\right)$, and we write the neutrino momentum as $p_{v}=\left(E_{v} / c, \mathbf{p}_{v}\right)$. The dot product is then $p_{\pi} \cdot p_{v}=m_{\pi} E_{v}$, and we have

$$
\begin{aligned}
& m_{\mu}^{2} c^{2}=m_{\pi}^{2} c^{2}+0-2 m_{\pi} E_{v} \\
& E_{\nu}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}} c^{2}
\end{aligned}
$$

To get the muon energy, the easiest way is to use conservation of energy:

$$
E_{\mu}=E_{\pi}-E_{v}=m_{\pi} c^{2}-\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}} c^{2}=\frac{2 m_{\pi}^{2}-m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}} c^{2}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}} c^{2} .
$$

4. A particle of mass \boldsymbol{m} and charge \boldsymbol{q} is in the presence of constant electric and magnetic

 fields $\mathbf{E}=E \hat{\mathbf{x}}$ and $\mathbf{B}=B \hat{\mathbf{z}}$.(a) Write out explicitly all four components of the equation for \dot{U}^{μ}, where dot stands for $d / d \tau$. Find an equation for \ddot{U}^{1}.

The electromagnetic field tensor is

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E / c & 0 & 0 \\
E / c & 0 & -B & 0 \\
0 & B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {, so } \quad F^{\mu}{ }_{v}=\left(\begin{array}{cccc}
0 & E / c & 0 & 0 \\
E / C & 0 & B & 0 \\
0 & -B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {, }
$$

where we lowered the index by changing the sign of the last three columns.

We now need to solve the equations

$$
m \dot{U}^{\mu}=q F^{\mu}{ }_{\nu} U^{\nu} \text {, or } \quad m\left(\begin{array}{c}
\dot{U}^{0} \\
\dot{U}^{1} \\
\dot{U}^{2} \\
\dot{U}^{3}
\end{array}\right)=q\left(\begin{array}{cccc}
0 & E / c & 0 & 0 \\
E / c & 0 & B & 0 \\
0 & -B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
U^{0} \\
U^{1} \\
U^{2} \\
U^{3}
\end{array}\right)=\left(\begin{array}{c}
q E U^{1} / c \\
q E U^{0} / c+q B U^{2} \\
-q B U^{1} \\
0
\end{array}\right)
$$

This breaks into four separate equations:

$$
\dot{U}^{0}=\frac{q E}{m c} U^{1}, \quad m \dot{U}^{1}=\frac{q E}{m c} U^{0}+\frac{q B}{m} U^{2}, \quad \dot{U}^{2}=-\frac{q B}{m} U^{1}, \quad \dot{U}^{3}=0 .
$$

The last equation is always trivial to solve.
To get a second order differential equation for U^{1}, take another time derivative of the second equation and substitute the first and third equation.

$$
\ddot{U}^{1}=\frac{q E}{m c} \dot{U}^{0}+\frac{q B}{m} \dot{U}^{2}=\frac{q E^{2}}{m^{2} c^{2}} U^{1}-\frac{q B^{2}}{m^{2}} U^{1}=\frac{q^{2}}{m^{2} c^{2}}\left(E^{2}-c^{2} B^{2}\right) U^{1}
$$

(b) What is the general solution for $U^{1}(\tau)$ part (b) if $E<c B$? Argue that it will exhibit periodic behavior (in τ), and find the period.

If $E<c B$, then we define

$$
\omega=\frac{q}{m c} \sqrt{B^{2} c^{2}-E^{2}}
$$

Then our equation is $\ddot{U}^{1}=-\omega^{2} U^{1}$, whose general solution is

$$
U^{1}=a \cos (\omega \tau)+b \sin (\omega \tau)
$$

This will exhibit periodic behavior with a period of

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi m c}{q \sqrt{E^{2}-c^{2} B^{2}}} .
$$

(c) Repeat part (b) if $E>c B$. Will it be periodic in this case?

If $E>c B$, then define

$$
\alpha=\frac{q}{m c} \sqrt{E^{2}-B^{2} c^{2}}
$$

Then our equation is $\ddot{U}^{1}=\alpha^{2} U^{1}$, whose general solution is

$$
U^{1}=a \cosh (\alpha \tau)+b \sinh (\alpha \tau)
$$

This does not exhibit periodic behavior.

