Physics 712

Chapter 3 Problems

2. [10] A hydrogen atom in the $2 P_{z}$ state has charge density given by

$$
\rho(\mathbf{x})=q \delta^{3}(\mathbf{x})-\frac{q r^{2}}{32 \pi a^{5}} e^{-r / a} \cos ^{2} \theta
$$

Show that this has no $I=0$ or $I=1$ multipole moment, but it does have an $I=2$ moment. Find the leading order contribution to the potential at large r.

The multipole moments are given by

$$
q_{l m}=\int r^{l} \rho(\mathbf{x}) Y_{l m}^{*}(\theta, \phi) d^{3} \mathbf{x}
$$

Because of the factor of r^{l}, the delta function only contributes to $l=m=0$, to which it contributes $q \int \delta^{3}(\mathbf{x}) Y_{00}^{*} d^{3} \mathbf{x}=q Y_{00}^{*}=q / \sqrt{4 \pi}$. A quick way to do the other term is to note (from quantum problem 7.5 again) that $\cos ^{2} \theta=\frac{2}{3} \sqrt{\pi} Y_{00}(\theta, \phi)+\frac{4}{3} \sqrt{\frac{\pi}{5}} Y_{20}(\theta, \phi)$. We therefore have

$$
\begin{aligned}
q_{l m} & =\int r^{l} \rho(\mathbf{x}) Y_{l m}^{*}(\theta, \phi) d^{3} \mathbf{x} \\
& =\frac{q}{\sqrt{4 \pi}} \delta_{l 0} \delta_{m 0}-\frac{q}{32 \pi a^{5}} \int Y_{l m}^{*}(\theta, \phi)\left[\frac{2}{3} \sqrt{\pi} Y_{00}(\theta, \phi)+\frac{4}{3} \sqrt{\frac{\pi}{5}} Y_{20}(\theta, \phi)\right] d \Omega \int_{0}^{\infty} r^{l} r^{2} e^{-r / a} r^{2} d r .
\end{aligned}
$$

We can then use the orthonormality of the spherical harmonics to simplify this to

$$
\begin{aligned}
q_{l m} & =\frac{q}{\sqrt{4 \pi}} \delta_{l 0} \delta_{m 0}-\frac{q}{32 \pi a^{5}}\left(\frac{2}{3} \sqrt{\pi} \delta_{10} \delta_{m 0}+\frac{4}{3} \sqrt{\frac{\pi}{5}} \delta_{l 2} \delta_{m 0}\right) a^{l+5}(l+4)! \\
& =\frac{q}{\sqrt{4 \pi}} \delta_{l 0} \delta_{m 0}-\frac{q a^{5} 2 \cdot 24 \sqrt{\pi}}{32 \pi a^{5} 3} \delta_{l 0} \delta_{m 0}-\frac{q a^{7} 4 \cdot 720 \sqrt{\pi}}{32 \pi a^{5} 3 \sqrt{5}} \delta_{12} \delta_{m 0} \\
& =\left(\frac{q}{\sqrt{4 \pi}}-\frac{q}{2 \sqrt{\pi}}\right) \delta_{10} \delta_{m 0}-\frac{6 \sqrt{5} q a^{2}}{\sqrt{\pi}} \delta_{12} \delta_{m 0}=-6 \sqrt{\frac{5}{\pi}} q a^{2} \delta_{12} \delta_{m 0} .
\end{aligned}
$$

Not only did we find that the $l=2$ is the first non-vanishing contribution, it is the only contribution. Hence outside the charge distribution, the potential is

$$
\Phi(\mathbf{x})=\frac{1}{\varepsilon_{0}} \sum_{l=0}^{\infty} \frac{1}{2 l+1} r^{-l-1} \sum_{m=-l}^{l} q_{l m} Y_{l m}(\theta, \phi)=\frac{q_{20}}{5 \varepsilon_{0} r^{3}} Y_{20}(\theta, \phi)=-\frac{6 q a^{2}}{\varepsilon_{0} \sqrt{5 \pi} r^{3}} Y_{20}(\theta, \phi)
$$

You can, if you wish, then substitute in the explicit form $Y_{20}(\theta, \phi)=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)$ to write this as

$$
\Phi(\mathbf{x})=\frac{3 q a^{2}}{2 \pi \varepsilon_{0} r^{3}}\left(1-3 \cos ^{2} \theta\right) .
$$

3. [15] Consider the three molecules at right. In each case, find only the leading multipole moment (smallest l), and then find the potential far from the molecule, keeping only the leading term. Assume the z-direction is to the right and
 the x-direction is up. Assume that any gray atom has charge $-2 q$, any white atom has charge $+q$, and any black atom has charge $+4 q$, and all bonds have length a. The bond angle is α for the middle molecule; for the last one it is $\mathbf{1 8 0}$.

For a discrete set of charges, the charge density is $\rho(\mathbf{x})=\sum_{i} q_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$, and therefore, the multipole moments will be

$$
q_{l m}=\int r^{l} Y_{l m}^{*}(\theta, \phi) \rho(\mathbf{x}) d^{3} \mathbf{x}=\sum_{i} q_{i} r_{i}^{l} Y_{l m}^{*}\left(\theta_{i}, \phi_{i}\right)
$$

Let's start with the first one, which I'll call OH^{-}. If we put the gray atom at the origin (r $=0$), then the white one will be at $r=a$ and $\theta=0$. The first multipole will be

$$
q_{00}=\sum_{i} q_{i} Y_{00}^{*}\left(\theta_{i}, \phi_{i}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{i} q_{i}=\frac{1}{\sqrt{4 \pi}}(-2 q+q)=-\frac{q}{\sqrt{4 \pi}}
$$

Since this is non-vanishing, it's the leading order term, and hence the potential is given by

$$
\Phi_{\mathrm{OH}^{-}}(\mathbf{x})=\frac{q_{00}}{\varepsilon_{0}(2 \cdot 0+1) r} Y_{00}(\theta, \phi)=\frac{-q}{\varepsilon_{0} r \sqrt{4 \pi}} \frac{1}{\sqrt{4 \pi}}=-\frac{q}{4 \pi \varepsilon_{0} r}
$$

The second one, which I'll call $\mathrm{H}_{2} \mathrm{O}$, has no net charge, so clearly it will have no $l=0$ component. Let's put the central atom at the origin, then it will not contribute to any of the higher multipole moments because of the factor of r^{l}. The two white atoms are both at polar angle $\theta=\frac{1}{2} \alpha$, and the azimuthal angle is $\phi=0$ for one and $\phi=\pi$ for the other. We therefore would have, for $l>0$,

$$
q_{l m}=q a^{l}\left[Y_{l m}^{*}\left(\frac{1}{2} \theta, 0\right)+Y_{l m}^{*}\left(\frac{1}{2} \theta, \pi\right)\right] .
$$

For $l=1$, this works out to

$$
\begin{aligned}
& q_{10}=q a\left[Y_{10}^{*}\left(\frac{1}{2} \alpha, 0\right)+Y_{10}^{*}\left(\frac{1}{2} \alpha, \pi\right)\right]=q a \sqrt{\frac{3}{4 \pi}}\left[\cos \left(\frac{1}{2} \alpha\right)+\cos \left(\frac{1}{2} \alpha\right)\right]=\sqrt{\frac{3}{\pi}} q a \cos \left(\frac{1}{2} \alpha\right), \\
& q_{1, \pm 1}=q a\left[Y_{1, \pm 1}^{*}\left(\frac{1}{2} \alpha, 0\right)+Y_{10}^{*}\left(\frac{1}{2} \alpha, \pi\right)\right]=\mp q a \sqrt{\frac{3}{8 \pi}}\left[\sin \left(\frac{1}{2} \alpha\right)+\sin \left(\frac{1}{2} \alpha\right) e^{\mp i \pi}\right]=0 .
\end{aligned}
$$

So there is only one term to this order, and the potential is, to leading order:

$$
\Phi_{\mathrm{H}_{2} \mathrm{O}}(\mathbf{x})=\frac{q_{10}}{\varepsilon_{0}(2 \cdot 1+1) r^{2}} Y_{10}(\theta, \phi)=\frac{q a}{3 \varepsilon_{0} r^{2}} \sqrt{\frac{3}{\pi}} \cos \left(\frac{1}{2} \alpha\right) \sqrt{\frac{3}{4 \pi}} \cos \theta=\frac{q a \cos \left(\frac{1}{2} \alpha\right) \cos \theta}{2 \pi \varepsilon_{0} r^{2}} .
$$

For our final molecule, which I'll call CO_{2}, the total charge is again zero, so $q_{00}=0$. For the higher multipoles, the gray atoms are at $r=a$ and $\theta=0$ or $\theta=\pi$, so the multipoles are given by

$$
q_{l m}=-2 q a^{l}\left[Y_{l m}^{*}(0, ?)+Y_{l m}^{*}(\pi, ?)\right] .
$$

One disturbing thing about this expression is that the azimuthal angle is ambiguous. Fortunately, the spherical harmonics vanish at $\theta=0$ and $\theta=\pi$ unless $l=0$, and for $l=0$, the terms have no azimuthal dependence, so it doesn't matter. Indeed, we have an explicit formula for the spherical harmonics at $\theta=0$, and we can use parity to get it at $\theta=\pi$, so it turns out

$$
q_{l m}=-2 q a^{l} \sqrt{\frac{2 l+1}{4 \pi}}\left[1+(-1)^{l}\right] \delta_{m 0}=\left\{\begin{array}{cc}
-2 q a^{l} \sqrt{(2 l+1) / \pi} & m=0, l \text { even. } \\
0 & \text { otherwise } .
\end{array}\right.
$$

This applies only for $l>0$. The first non-zero term is $l=2$, so we have

$$
q_{20}=-2 q a^{2} \sqrt{\frac{5}{\pi}}
$$

The potential far away is then

$$
\Phi_{\mathrm{CO}_{2}}(\mathbf{x})=\frac{q_{20}}{\varepsilon_{0}(2 \cdot 2+1) r^{3}} Y_{20}(\theta, \phi)=\frac{-2 q a^{2}}{5 \varepsilon_{0} r^{3}} \sqrt{\frac{5}{\pi}} \frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right)=\frac{q a^{2}}{2 \pi \varepsilon_{0} r^{3}}\left(1-3 \cos ^{2} \theta\right) .
$$

