Physics 712

Chapter 3 Problems

4. [10] A grounded conducting cube of side a has charge density

 $\rho(\mathbf{x})=\lambda x(a-x) y(a-y) z(a-z)$ inside it. Find the potential everywhere, and numerically at the center.We use the Green's function approach, which gives the answer as

$$
\begin{aligned}
\Phi(\mathbf{x})= & \frac{1}{4 \pi \varepsilon_{0}} \int_{V} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d^{3} \mathbf{x}^{\prime} \\
= & \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{p=1}^{\infty} \frac{8 a^{2} \lambda}{\pi^{2} \varepsilon_{0} a^{3}\left(n^{2}+m^{2}+p^{2}\right)} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m y}{a}\right) \sin \left(\frac{\pi p z}{a}\right) \\
& \times \int_{0}^{a} x^{\prime}\left(a-x^{\prime}\right) \sin \left(\frac{\pi n x^{\prime}}{a}\right) d x^{\prime} \int_{0}^{a} y^{\prime}\left(a-y^{\prime}\right) \sin \left(\frac{\pi m y^{\prime}}{a}\right) d y^{\prime} \int_{0}^{a} z^{\prime}\left(a-z^{\prime}\right) \sin \left(\frac{\pi p z^{\prime}}{a}\right) d z^{\prime}
\end{aligned}
$$

We have three nearly identical integrals to do, which Maple is happy to help us with.

```
> assume(n::integer);int(x*(a-x)*sin(Pi*n*x/a),x=0..a);
```

We find:

$$
\int_{0}^{a} x^{\prime}\left(a-x^{\prime}\right) \sin \left(\frac{\pi n x^{\prime}}{a}\right) d x^{\prime}=\frac{2 a^{3}}{\pi^{3} n^{3}}\left[1-(-1)^{n}\right]=\left\{\begin{array}{cc}
4 a^{3} /\left(\pi^{3} n^{3}\right) & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

So our potential is

$$
\Phi(\mathbf{x})=\sum_{n \text { odd } m \text { odd } p \text { odd }}^{\infty} \sum^{\infty} \frac{512 a^{8} \lambda}{\pi^{11} \varepsilon_{0} n^{3} m^{3} p^{3}\left(n^{2}+m^{2}+p^{2}\right)} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m y}{a}\right) \sin \left(\frac{\pi p z}{a}\right) .
$$

We now wish to evaluate this at the center, where each of the sines becomes $\sin \left(\frac{1}{2} \pi n\right)$, which alternates between being +1 and -1 . We therefore have

$$
\Phi\left(\frac{1}{2} a, \frac{1}{2} a, \frac{1}{2} a\right)=\sum_{n \text { odd }}^{\infty} \sum_{m \text { odd } p}^{\infty} \sum_{p \text { odd }}^{\infty} \frac{512 \lambda a^{8}(-1)^{(n+m+p-3) / 2}}{\pi^{11} \varepsilon_{0} n^{3} m^{3} p^{3}\left(n^{2}+m^{2}+p^{2}\right)} .
$$

Because of the high power in the denominator, this sum converges pretty quickly. We can let Maple do it for us

```
> add(add(add(evalf(512*(-1)^(n+m+p)/(2*n+1)^3/(2*m+1)^3/
    (2*p+1)^3/((2*n+1)^2+(2*m+1)^2+(2*p+1)^2)/Pi^11), n=0..99),
    m=0..99),p=0..99);
```

We find $\Phi\left(\frac{1}{2} a, \frac{1}{2} a, \frac{1}{2} a\right)=0.0005641353100 \lambda a^{8} / \varepsilon_{0}$. It should be noted that the first term gives a pretty good approximation, which is $\Phi\left(\frac{1}{2} a, \frac{1}{2} a, \frac{1}{2} a\right) \approx 0.000580 \lambda a^{8} / \varepsilon_{0}$, or about 3% off.

