Physics 712

Chapter 3 Problems

5. [15] A semi-infinite cylinder of radius a has potential $\Phi=0$ on the lateral surface, and Φ $=V$ on the surface at $z=0$. Write the potential as an infinite series. Assuming the potential does not diverge as $z \rightarrow \infty$, which coefficients must vanish? Find the potential everywhere, and numerically at $\rho=0$ and $z=a$.

Since the potential vanishes at $\rho=a$, it can be written as a superposition of Bessel functions times $e^{i m \phi}$, that is

$$
\Phi(\rho, \phi, z)=\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} A_{m n}(z) J_{m}\left(\frac{x_{m n} \rho}{a}\right) e^{i m \phi}
$$

where $x_{m n}$ is the n 'th root of J_{m}. It must satisfy Laplace's equation in the interior, which tells us

$$
\begin{aligned}
0 & =\nabla^{2} \Phi=\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty}\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] A_{m n}(z) J_{m}\left(\frac{x_{m n} \rho}{a}\right) e^{i m \phi} \\
& =\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} e^{i m \phi}\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}-\frac{m^{2}}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] A_{m n}(z) J_{m}\left(\frac{x_{m n} \rho}{a}\right) \\
& =\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{x_{m n} \rho}{a}\right) e^{i m \phi}\left[-\frac{x_{m n}^{2}}{a^{2}}+\frac{d^{2}}{d z^{2}}\right] A_{m n}(z)
\end{aligned}
$$

Since $J_{m}\left(x_{m n} \rho / a\right) e^{i m \phi}$ forms an independent set of functions on ρ and ϕ, the only way this can be achieved is if the coefficients all vanish, which implies

$$
\left[-\frac{x_{m n}^{2}}{a^{2}}+\frac{d^{2}}{d z^{2}}\right] A_{m n}(z)=0, \quad \text { or } \quad \frac{d^{2}}{d z^{2}} A_{m n}(z)=\frac{x_{m n}^{2}}{a^{2}} A_{m n}(z)
$$

This equation has two linearly independent solutions, so

$$
A_{m n}(z)=\alpha_{m n} \exp \left(\frac{x_{m n} z}{a}\right)+\beta_{m n} \exp \left(-\frac{x_{m n} z}{a}\right) .
$$

But we only want solutions that do not blow up at infinity, so we demand $\alpha_{m n}=0$, and then have

$$
\Phi(\rho, \phi, z)=\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \beta_{m n} J_{m}\left(\frac{x_{m n} \rho}{a}\right) e^{i m \phi} \exp \left(-\frac{x_{m n} z}{a}\right) e^{-x_{m n} z / a}
$$

It remains to find the coefficients $\beta_{m n}$. Evaluating this expression at $z=0$, we must have

$$
V=\sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \beta_{m n} J_{m}\left(\frac{x_{m n} \rho}{a}\right) e^{i m \phi} .
$$

We can use the orthonogonality of the functions $J_{m}\left(x_{m n} \rho / a\right) e^{i m \phi}$ to then find:

$$
\begin{aligned}
\beta_{m n} & =\frac{1}{2 \pi} \cdot \frac{2}{a^{2} J_{m+1}^{2}\left(x_{m n}\right)} \int_{0}^{2 \pi} e^{-i m \phi} d \phi \int_{0}^{a} V J_{m}\left(\frac{x_{m n} \rho}{a}\right) \rho d \rho=\frac{2 V \delta_{m 0}}{a^{2} J_{1}^{2}\left(x_{0 n}\right)} \int_{0}^{a} J_{0}\left(\frac{x_{0 n} \rho}{a}\right) \rho d \rho \\
& =\frac{2 V \delta_{m 0}}{x_{0 n}^{2} J_{1}^{2}\left(x_{0 n}\right)} \int_{0}^{x_{0 n}} J_{0}(y) y d y,
\end{aligned}
$$

where in the last step we made the substitution $\rho=a y / x_{0 n}$. You can get Maple to do the integrals numerically, or if you want to be cleverer, you can use the recursion relations

$$
J_{m \pm 1}(x)=\frac{m}{x} J_{m}(x) \mp \frac{d}{d x} J_{m}(x)
$$

to rewrite the final integral as

$$
\int_{0}^{x_{0 n}} J_{0}(y) y d y=\int_{0}^{x_{0 n}}\left[\frac{1}{y} J_{1}(y)+\frac{d}{d y} J_{1}(y)\right] y d y=\int_{0}^{x_{0 n}} \frac{d}{d y}\left[y J_{1}(y)\right] d y=\left.y J_{1}(y)\right|_{0} ^{x_{0 n}}=x_{0 n} J_{1}\left(x_{0 n}\right)
$$

We therefore find $\beta_{0 n}=2 V /\left[x_{0 n} J_{1}\left(x_{0 n}\right)\right]$. The first several terms can be found in the table at right. The potential is

$$
\Phi(\rho, \phi, z)=\sum_{n=1}^{\infty} \frac{2 V}{x_{0 n} J_{1}\left(x_{0 n}\right)} J_{0}\left(\frac{x_{0 n} \rho}{a}\right) \exp \left(-\frac{x_{0 n} z}{a}\right) .
$$

Substituting in $z=a$ and using the fact that $J_{0}(0)=1$, we have

$$
\Phi(0, \phi, a)=\sum_{n=1}^{\infty} \frac{2 V e^{-x_{0 n}}}{x_{0 n} J_{1}\left(x_{0 n}\right)}=0.1405064065 \mathrm{~V} .
$$

n	$\beta_{0 n} / V$
1	1.601974697
2	-1.064799259
3	0.851399193
4	-0.729645240
5	0.648523614
6	-0.589542829
7	0.544180196
8	-0.507893631
9	0.478012498

We let Maple do the sum for us. The numerical value was found adding seven terms.

```
> add(2/exp(x)/x/BesselJ(1,x),x=evalf(BesselJZeros(0,1..7)));
```

