Physics 712

Chapter 4 Problems

3. [15] An infinite line charge with charge per unit length $\lambda=0$ parallel to the x-axis a distance h above a semi-infinite dielectric with dielectric constant ε. Find the force per unit length on the line charge. Find the bound surface charge density σ_{b} on the surface of the dielectric.

We can think of a line of charge as if it were a series of point charges of length $d x$ each of which has charge $\lambda d x$. When calculating the resulting electric field above the plane, we have to add image charges below the plane. It is clear that this will correspond to just a line of charges at $z=-h$ of magnitude λ^{\prime}. Similarly, when calculating the electric field within the dielectric, it will look like it is coming from a line charge λ " located above the plane at $z=h$. The magnitude of these fictitious line charges will be

$$
\lambda^{\prime}=\frac{\varepsilon_{0}-\varepsilon}{\varepsilon_{0}+\varepsilon} \lambda, \quad \lambda^{\prime \prime}=\frac{2 \varepsilon}{\varepsilon+\varepsilon_{0}} \lambda .
$$

The electric field from a line charge in vacuum was calculated long ago. It is given, for the line charge itself, by

$$
\mathbf{E}(\mathbf{x})=\frac{\lambda \hat{\boldsymbol{\rho}}}{2 \pi \varepsilon_{0} \rho}=\frac{\lambda \boldsymbol{\rho}}{2 \pi \varepsilon_{0} \rho^{2}},
$$

where ρ is a vector pointing from the line to an arbitrary point. It will be given by

$$
\mathbf{E}(\mathbf{x})=\frac{\lambda[y \hat{\mathbf{y}}+(z-h) \hat{\mathbf{z}}]}{2 \pi \varepsilon_{0}\left[y^{2}+(z-h)^{2}\right]} .
$$

We now add to this the contribution from the image charges, so that for $z>0$, the electric field will be

$$
\mathbf{E}(\mathbf{x})=\frac{\lambda[y \hat{\mathbf{y}}+(z-h) \hat{\mathbf{z}}]}{2 \pi \varepsilon_{0}\left[y^{2}+(z-h)^{2}\right]}-\frac{\lambda\left(\varepsilon-\varepsilon_{0}\right)[y \hat{\mathbf{y}}+(z+h) \hat{\mathbf{z}}]}{2 \pi \varepsilon_{0}\left(\varepsilon+\varepsilon_{0}\right)\left[y^{2}+(z+h)^{2}\right]} \quad \text { for } \quad z>0 .
$$

Below the plane, the main change is we need to remember to divide by ε, since we are in the medium. We therefore have

$$
\mathbf{E}(\mathbf{x})=\frac{2 \varepsilon \lambda[y \hat{\mathbf{y}}+(z-h) \hat{\mathbf{z}}]}{2 \pi \varepsilon\left(\varepsilon+\varepsilon_{0}\right)\left[y^{2}+(z-h)^{2}\right]}=\frac{\lambda[y \hat{\mathbf{y}}+(z-h) \hat{\mathbf{z}}]}{\pi\left(\varepsilon+\varepsilon_{0}\right)\left[y^{2}+(z-h)^{2}\right]} \quad \text { for } \quad z<0 .
$$

To find the force, we realize that the force is due to the electric field from the image line charge on the actual charge. The force on a charge is $\mathbf{F}=q \mathbf{E}$, so the force per unit length on the line charge would be $\mathbf{F} / L=q \mathbf{E} / L=\lambda \mathbf{E}$, so

$$
\frac{\mathbf{F}}{L}=\lambda \mathbf{E}=-\frac{\lambda^{2}\left(\varepsilon-\varepsilon_{0}\right)[0 \hat{\mathbf{y}}+(h+h) \hat{\mathbf{z}}]}{2 \pi \varepsilon_{0}\left(\varepsilon+\varepsilon_{0}\right)\left[0^{2}+(h+h)^{2}\right]}=-\frac{\lambda^{2}\left(\varepsilon-\varepsilon_{0}\right) \hat{\mathbf{z}}}{4 \pi \varepsilon_{0}\left(\varepsilon+\varepsilon_{0}\right) h} .
$$

To find the bound surface charge density, we simply find $\sigma_{b}=\mathbf{P} \cdot \hat{\mathbf{z}}$ at $z=0$, to give

$$
\sigma_{b}=\mathbf{P} \cdot \hat{\mathbf{z}}=\left(\mathbf{D}-\varepsilon_{0} \mathbf{E}\right) \cdot \hat{\mathbf{z}}=\left(\varepsilon-\varepsilon_{0}\right) \mathbf{E} \cdot \hat{\mathbf{z}}=\frac{\lambda\left(\varepsilon-\varepsilon_{0}\right)[y \hat{\mathbf{y}}+(0-h) \hat{\mathbf{z}}] \cdot \hat{\mathbf{z}}}{\pi\left(\varepsilon+\varepsilon_{0}\right)\left[y^{2}+(0-h)^{2}\right]}=\frac{\lambda h\left(\varepsilon_{0}-\varepsilon\right)}{\pi\left(\varepsilon+\varepsilon_{0}\right)\left(y^{2}+h^{2}\right)}
$$

Interestingly, if you integrate this over y, you will get the linear charge density λ^{\prime}, and this is not a coincidence.
4. [15] A dielectric sphere with dielectric constant ε of radius a lies at the origin in a background potential (in the absence of the sphere) of the form $\Phi(\mathbf{x})=\lambda x y$.
(a) Write the background potential in terms of spherical harmonics times powers of r.

We first note that the background potential, in spherical coordinates, is

$$
\Phi(\mathbf{x})=\lambda r^{2} \sin ^{2} \theta \sin \phi \cos \phi=\frac{1}{2} \lambda r^{2} \sin ^{2} \theta \sin (2 \phi) .
$$

Comparing this to the spherical harmonics $Y_{2, \pm 2}(\theta, \phi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}$, it is not hard to see that

$$
\lambda x y=\frac{1}{2} \lambda r^{2} \sin ^{2} \theta \sin (2 \phi)=\frac{\lambda}{4 i} r^{2} \sin ^{2} \theta\left(e^{2 i \phi}-e^{-2 i \phi}\right)=\frac{4 \lambda}{4 i} \sqrt{\frac{2 \pi}{15}} r^{2}\left[Y_{2,2}(\theta, \phi)-Y_{2,-2}(\theta, \phi)\right]
$$

(b) Write a reasonable conjecture for the form of the potential in the regions $r<a$ and r $>a$. Your conjecture should automatically satisfy $\nabla^{2} \Phi=0$ within each of these regions. It may contain unknown constants.

We recall that $\nabla^{2} \Phi=0$ for an arbitrary potential of the form

$$
\Phi(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\alpha_{l m} r^{l}+\beta_{l m} r^{-l-1}\right) Y_{l m}(\theta, \phi)
$$

Our conjecture is now:

$$
\begin{aligned}
& \Phi_{\text {out }}(r, \theta, \phi)=\lambda i \sqrt{\frac{2 \pi}{15}}\left(r^{2}+\beta r^{-3}\right)\left[Y_{2,-2}(\theta, \phi)-Y_{2,2}(\theta, \phi)\right] \\
& \Phi_{\text {in }}(r, \theta, \phi)=\lambda i \sqrt{\frac{2 \pi}{15}}\left(\alpha r^{2}\right)\left[Y_{2,-2}(\theta, \phi)-Y_{2,2}(\theta, \phi)\right]
\end{aligned}
$$

This automatically satisfies Laplace's equation. Furthermore, it has the correct asymptotic form at $r=\infty$ and is well-behaved at $r=0$.
(c) By matching suitable boundary conditions, determine the value of any unknown constants.

Since we are working with the potential, it makes sense to match the potential at the boundary $r=a$. We therefore have

$$
a^{2}+\beta a^{-3}=\alpha a^{2}, \quad \text { or } \quad \alpha=1+\beta a^{-5} .
$$

Matching this equation will automatically insure that $\mathbf{E}_{\| \mid}$is continuous as well.
It remains to make sure that \mathbf{D}_{\perp}. To make this match, we need

$$
\begin{aligned}
\varepsilon \mathbf{E}_{\perp \text { in }} & =\varepsilon_{0} \mathbf{E}_{\perp \text { out }}, \\
\left.\varepsilon \frac{\partial}{\partial r} \Phi_{\text {in }}(r)\right|_{r=a} & =\left.\varepsilon_{0} \frac{\partial}{\partial r} \Phi_{\text {out }}(r)\right|_{r=a}, \\
\varepsilon \lambda i \sqrt{\frac{2 \pi}{15}(2 \alpha a)\left[Y_{2,-2}(\theta, \phi)-Y_{2,2}(\theta, \phi)\right]} & =\varepsilon_{0} \lambda i \sqrt{\frac{2 \pi}{15}}\left(2 a-3 \beta a^{-4}\right)\left[Y_{2,-2}(\theta, \phi)-Y_{2,2}(\theta, \phi)\right], \\
2 \alpha \varepsilon & =\left(2-3 \beta a^{-5}\right) \varepsilon_{0} .
\end{aligned}
$$

If we substitute our previous equation into this one, we find

$$
\begin{aligned}
2 \varepsilon\left(1+\beta a^{-5}\right) & =\left(2-3 \beta a^{-5}\right) \varepsilon_{0}, \\
2\left(\varepsilon-\varepsilon_{0}\right) & =-\left(3 \varepsilon_{0}+2 \varepsilon\right) \beta a^{-5}, \\
\beta & =-\frac{2\left(\varepsilon-\varepsilon_{0}\right)}{3 \varepsilon_{0}+2 \varepsilon} a^{5} .
\end{aligned}
$$

We also find

$$
\alpha=1+\beta a^{-5}=1-\frac{2\left(\varepsilon-\varepsilon_{0}\right)}{3 \varepsilon_{0}+2 \varepsilon}=\frac{5 \varepsilon_{0}}{3 \varepsilon_{0}+2 \varepsilon}
$$

Substituting these two expressions back in, and getting rid of the spherical harmonics, we have

$$
\begin{aligned}
& \Phi_{\text {out }}(r, \theta, \phi)=\left(\lambda r^{2}-\frac{2 \varepsilon-2 \varepsilon_{0}}{3 \varepsilon_{0}+2 \varepsilon} \cdot \frac{\lambda a^{5}}{r^{3}}\right) \sin ^{2} \theta \cos \phi \sin \phi, \\
& \Phi_{\text {in }}(r, \theta, \phi)=\frac{5 \varepsilon_{0}}{3 \varepsilon_{0}+2 \varepsilon} \lambda r^{2} \sin ^{2} \theta \cos \phi \sin \phi
\end{aligned}
$$

