Physics 712

Solution to Problems 4.5 and 5.1
5. [5] For problem 4.1, find the total energy if the cylinder has length L. For problem 4.2, find the total energy. In each case, show that the answer is equivalent to $W=\frac{1}{2} Q \Delta \Phi$.

The energy is given for problem 4.1 by

$$
\begin{aligned}
W & =\frac{1}{2} \int \mathbf{E} \cdot \mathbf{D} d^{3} \mathbf{x}=\frac{1}{2} \int_{0}^{2 \pi} d \phi \int_{0}^{L} d z\left[\int_{a}^{b} \varepsilon\left(\frac{\lambda}{2 \pi \varepsilon \rho}\right)^{2} \rho d \rho+\int_{b}^{c} \varepsilon_{0}\left(\frac{\lambda}{2 \pi \varepsilon_{0} \rho}\right)^{2} \rho d \rho\right] \\
& =\frac{2 \pi \lambda^{2} L}{8 \pi^{2}}\left(\left.\frac{1}{\varepsilon} \ln \rho\right|_{a} ^{b}+\left.\frac{1}{\varepsilon_{0}} \ln \rho\right|_{b} ^{c}\right)=\frac{\lambda^{2} L}{4 \pi}\left[\frac{1}{\varepsilon} \ln \left(\frac{b}{a}\right)+\frac{1}{\varepsilon_{0}} \ln \left(\frac{c}{b}\right)\right]=\frac{1}{2} \lambda L \Delta \Phi=\frac{1}{2} Q \Delta \Phi,
\end{aligned}
$$

where at the last step, we interpreted $\lambda L=Q$ as the total charge. For problem 4.2, we have

$$
\begin{aligned}
W & =\frac{1}{2} \int \mathbf{E} \cdot \mathbf{D} d^{3} \mathbf{x}=\frac{1}{2} \int_{0}^{2 \pi} d \phi \int_{a}^{b}\left[\frac{Q}{\pi\left(3 \varepsilon_{0}+\varepsilon\right) r^{2}}\right]^{2} r^{2} d r\left(\int_{0}^{\frac{1}{3} \pi} \varepsilon \sin \theta d \theta+\int_{\frac{1}{3} \pi}^{\pi} \varepsilon_{0} \sin \theta d \theta\right) \\
& =\left.\frac{2 \pi Q^{2}}{2 \pi^{2}\left(3 \varepsilon_{0}+\varepsilon\right)^{2}} \frac{-1}{r}\right|_{a} ^{b}\left(-\left.\varepsilon \cos \theta\right|_{0} ^{\frac{1}{3} \pi}-\left.\varepsilon_{0} \cos \theta\right|_{\frac{3}{3} \pi} ^{\pi}\right)=\frac{Q^{2}}{\pi\left(3 \varepsilon_{0}+\varepsilon\right)^{2}}\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{2} \varepsilon+\frac{3}{2} \varepsilon_{0}\right) \\
& =\frac{Q^{2}(b-a)}{2 \pi a b\left(3 \varepsilon_{0}+\varepsilon\right)}=\frac{1}{2} Q \Delta \Phi .
\end{aligned}
$$

1. [10] We are trying to trap a charged particle of mass $\boldsymbol{q}>0$ and mass \boldsymbol{m} by using a combination of magnetic and electric fields given by $\mathbf{B}=B \hat{\mathbf{z}}$ and $\mathbf{E}=A(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}-2 z \hat{\mathbf{z}})$.
(a) [1] Obviously, $\nabla \cdot \mathbf{B}=\nabla \times \mathbf{B}=0$. Check that it also satisfies $\nabla \cdot \mathbf{E}=\nabla \times \mathbf{E}=0$.

We simply see that $\nabla \cdot \mathbf{E}=A+A-2 A=0$, and all the terms in $\nabla \times \mathbf{E}$ vanish.
(b) [6] Assume the particle has motion given by $x=R \cos (\omega t), \quad y=R \sin (\omega t)$. Find an equation for ω in terms of A and B.

The velocity and acceleration can be found by simply taking derivatives:

$$
\mathbf{v}=\dot{\mathbf{x}}=R \omega[-\sin (\omega t) \hat{\mathbf{x}}+\cos (\omega t)], \quad \mathbf{a}=\dot{\mathbf{v}}=R \omega^{2}[-\cos (\omega t) \hat{\mathbf{x}}-\sin (\omega t)]
$$

We therefore have

$$
\begin{gathered}
m \mathbf{a}=\mathbf{F}=(\mathbf{E}+\mathbf{v} \times \mathbf{B})=q R A[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}]+q B R \omega[-\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}] \times \hat{\mathbf{z}}, \\
-m R \omega^{2}[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}]=q R A[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}]+q B R \omega[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}], \\
-m R \omega^{2}=q R A+q B R \omega, \\
m \omega^{2}+q B \omega+q A=0 .
\end{gathered}
$$

We then solve this using the quadratic equation, so

$$
\omega=\frac{-q B \pm \sqrt{q^{2} B^{2}-4 m q A}}{2 m} .
$$

Until I solved this problem myself, I didn't even realize there were two solutions to this equation.
(c) [3] Argue that there is a maximum value of \boldsymbol{A} for which circular motion is possible. Also argue that for $A>0$, the particle will not "wander off" in the z-direction.

The solution only makes sense if the discriminant is positive, so we must have $q^{2} B^{2} \geq 4 m q A$, or $A \leq q B^{2} /(4 m)$. Although we have not discusses motion in the z-direction, it is pretty easy to see that the magnetic field has no influence on it, so the only vertical force is $F_{z}=E_{z} q=-2 A z q$. Such a linear restoring force will result in simple harmonic motion in the $z-$ direction, so it is stable against motion in the z-direction.

