Physics 712

Chapter X Problems

2. Consider a model in which electrons have a number density $\boldsymbol{n}_{\boldsymbol{e}}$ and are in a damped harmonic oscillator, such that their displacement x in the presence of an electric field will be governed by $m \ddot{\mathbf{x}}=-e \mathbf{E}-m \gamma \dot{\mathbf{x}}-m \omega_{0}^{2} \mathbf{x}$. Assuming the positions and electric field are both proportional to $e^{-i \omega t}$, find the relationship between E and x. Then find the polarization $\mathbf{P}=-n_{e} e \mathbf{x}$, and the complex permittivity ε. As a check, make sure you get the same answer as we did for a collisionless plasma ($\gamma=\omega_{0}=0$).

Rewriting $\mathbf{x}(t)=\mathbf{x} e^{-i \omega t}$ and $\mathbf{E}(t)=\mathbf{E} e^{-i \omega t}$, we see that all time derivatives just become factors of $-i \omega$, so we have

$$
-m \omega^{2} \mathbf{x}=-e \mathbf{E}+i m \gamma \omega \mathbf{x}-m \omega_{0}^{2} \mathbf{x}
$$

Solving for \mathbf{x}, we have

$$
m \omega_{0}^{2} \mathbf{x}-m \omega^{2} \mathbf{x}-i m \gamma \omega \mathbf{x}=\frac{-e \mathbf{E}}{m\left(\omega_{0}^{2}-\omega^{2}-i m \gamma \omega\right)}
$$

The polarization will just be $\mathbf{P}=-n e \mathbf{x}$, and therefore

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0} \mathbf{E}+\frac{n e^{2} \mathbf{E}}{m\left(\omega_{0}^{2}-\omega^{2}-i m \gamma \omega\right)} .
$$

Since $\mathbf{D}=\varepsilon \mathbf{E}$, the permittivity is therefore

$$
\varepsilon=\varepsilon_{0}+\frac{n e^{2}}{m\left(\omega_{0}^{2}-\omega^{2}-i \gamma \omega\right)}
$$

If we compare this with the formula for a plasma, we have

$$
\varepsilon=\varepsilon_{0}+\frac{i \sigma}{\omega}=\varepsilon_{0}-\frac{n_{e} e^{2}}{m \omega^{2}} .
$$

This is clearly the same equation if we let $\gamma=\omega_{0}=0$.

3. What is the real part of the permittivity of a material if

$$
\operatorname{Im}[\varepsilon(\omega)]=\left\{\begin{array}{cc}
a\left(\omega_{0}^{2} \omega-\omega^{3}\right) & \text { for } \omega<\omega_{0} \\
0 & \text { for } \omega>\omega_{0}
\end{array}\right.
$$

It should be noted that you will not have to use the principal part when attempting to find $\operatorname{Re}[\varepsilon(\omega)]$ if $\omega>\omega_{0}$.

We simply use the Kramers-Kronig relationship

$$
\begin{aligned}
\operatorname{Re}[\varepsilon(\omega)] & =\varepsilon_{0}+\frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega^{\prime} \operatorname{Im}\left[\varepsilon\left(\omega^{\prime}\right)\right]}{\omega^{\prime 2}-\omega^{2}} d \omega^{\prime}=\varepsilon_{0}+\frac{2 a}{\pi} P \int_{0}^{\omega_{0}} \frac{\omega^{\prime 2}\left(\omega_{0}^{2}-\omega^{\prime 2}\right)}{\omega^{\prime 2}-\omega^{2}} d \omega^{\prime} \\
& =\varepsilon_{0}+\frac{2 a}{\pi} P \int_{0}^{\omega_{0}}\left[-\omega^{\prime 2}+\left(\omega_{0}^{2}-\omega^{2}\right)\left(1-\frac{\frac{1}{2} \omega}{\omega^{\prime}+\omega}+\frac{\frac{1}{2} \omega}{\omega^{\prime}-\omega}\right)\right] d \omega^{\prime} \\
& =\varepsilon_{0}+\left.\frac{2 a}{\pi} P\left\{-\frac{1}{3} \omega^{\prime 3}+\left(\omega_{0}^{2}-\omega^{2}\right)\left[\omega^{\prime}-\frac{1}{2} \omega \ln \left(\omega^{\prime}+\omega\right)+\frac{1}{2} \omega \ln \left|\omega^{\prime}-\omega\right|\right]\right\}\right|_{0} ^{\omega_{0}} .
\end{aligned}
$$

Only the final term requires any care in evaluating the limit, as we must avoid the pole at $\omega^{\prime}=\omega$. When $\omega>\omega_{0}$, there is no pole, and this last term just yields $\ln \left(\omega-\omega_{0}\right)-\ln \left(\omega_{0}\right)$, but if $\omega<\omega_{0}$, then

$$
\begin{aligned}
\left.P\left(\ln \left|\omega^{\prime}-\omega\right|\right)\right|_{0} ^{\omega_{0}} & =\lim _{\delta \rightarrow 0^{+}}\left[\left.\left(\ln \left|\omega^{\prime}-\omega\right|\right)\right|_{0} ^{\omega-\delta}+\left(\ln \left|\omega^{\prime}-\omega\right|\right)| |_{\omega+\delta}^{\omega_{0}}\right] \\
& =\lim _{\delta \rightarrow 0^{+}}\left[\ln |-\delta|-\ln |-\omega|+\ln \left|\omega_{0}-\omega\right|-\ln |\delta|\right]=\ln \left(\frac{\left|\omega_{0}-\omega\right|}{\omega}\right) .
\end{aligned}
$$

The last expression works in both cases. So we have

$$
\begin{aligned}
\operatorname{Re}[\varepsilon(\omega)] & =\varepsilon_{0}+\frac{2 a}{\pi}\left\{\frac{2}{3} \omega_{0}^{3}-\omega_{0} \omega^{2}+\frac{1}{2} \omega\left(\omega_{0}^{2}-\omega^{2}\right)\left[\ln \left(\frac{\left|\omega-\omega_{0}\right|}{\omega}\right)-\ln \left(\frac{\omega+\omega_{0}}{\omega}\right)\right]\right\} \\
& =\varepsilon_{0}+\frac{2 a}{\pi}\left[\frac{2}{3} \omega_{0}^{3}-\omega_{0} \omega^{2}+\frac{1}{2} \omega\left(\omega_{0}^{2}-\omega^{2}\right) \ln \left(\frac{\left|\omega-\omega_{0}\right|}{\omega+\omega_{0}}\right)\right]
\end{aligned}
$$

