
Physics 780 – General Relativity 
Solution Set O 

 
36. In homework set L, problem 30, you found the general solution for a black hole if there 

is also a cosmological constant.  In the problem, we are going to consider a universe 
with no black hole and just a cosmological constant, with metric 

 ( ) ( ) ( )12 2 2 2 2 2 2 2 21 1
3 31 d 1 d d sin  d .ds r t r r r θ θ φ

−
= − − Λ + − Λ + +  

 Our ultimate goal is to change coordinates to get rid of the apparent singularity, and 
make a Penrose diagram for this metric. 
(a) This metric has an apparent singularity at r = b (what is b?).  Rewrite the metric in 

terms of b instead of Λ.  In which regions of radius ( )0,r∈ ∞  are r and t spacelike or 
timelike? 

  
 We start by noting that we have apparent singularities at 3b = Λ , and we can write 

 ( ) ( ) ( )12 2 2 2 2 2 2 2 2 2 21 d 1 d d sin  d .ds r b t r b r r θ θ φ
−

= − − + − + +  

It is obvious from this formulation that r is spacelike and t timelike for r < b but the two switch 
for r > b.  At the moment, we only trust the metric for r < b, but will ultimately extend it so it 
works everywhere. 
 

(b) As we did for Schwarzschild, define a coordinate ( )* *r r r=  such that light-like 

radial curves will have * 1dr dt = ± , i.e., at 45° angles. This will require an 
integration; choose the constant of integration so that * 0r =  when r = 0.  What value 
of *r  corresponds to the trouble spot r = b? 

 
 A light beam will have ds = 0, and if it is moving radially then 0d dθ φ= = .  It is easy to 
show that such a beam will therefore satisfy ( )2 21dr dt r b= ± − .  We want to define a tortoise 

coordinate so that they will satisfy * 1dr dt = ± , which suggests ( ) 1* 2 21dr dr r b
−

= − .  To find 
*r , we simply integrate this, so  

 
*

* 2 1 1
2 2

1 tanh tanh
1

dr dr r rr dr b b
dr r b b b b

− −   = = = =   −    ∫ ∫  

It is easy to invert this equation, so that we also have ( )*tanhr b r b= . The constant of 
integration was chosen as suggested in the problem. 

 



(c) Unlike Schwarzschild, it is easy to invert this relation, so we can find ( )*r r r= .  Use 

this to write the metric entirely in terms of *r .  Then change variables to null 
coordinates *, ,t r u v→ , where *v t r= +  and *u t r= − .  In u, v coordinates, where is r 
= 0 now?  In u, v coordinates, where is r = b now?  Write the metric in terms of u 
and v. 

 
 The change to *r  was made such that the *2dr  term will have the same coefficient 

(except for sign) as the dt2 term.  We therefore have 

 
( ) ( ) ( )( )

( )( ) ( )( )

2 2 * *2 2 2 2 * 2 2 2

2 * *2 2 2 2 * 2 2 2

1 tanh d d tanh d sin d

sech d d tanh d sin d .

ds r b r t b r b

r b r t b r b

θ θ φ

θ θ φ

 = − − + + 

= − + +
 

We then make the change to v and u as suggested, noting that 2 *2d d d du v t r= − .  We also note 
that ( )* 1

2r v u= − , so we have 

 ( )2 2 2 2 2 2 2sech d d tanh d sin d .
2 2

v u v uds u v b
b b

θ θ φ− −   = − + +   
   

 

We note first that since ( )1tanh 1− = ∞ , r = b corresponds to *r = ∞ , and therefore v = ∞  and 

u = −∞ .  In contrast, r = 0 is * 0r = , and this is the line v u= . 
 

(d) In an attempt to get r = b back under control, define new coordinates v bv e−′ = −  and 
u bu e′ = .  Write the metric in terms of u' and v'.  Write a formula for r in terms of u' 

and v'.  Write the metric in terms of u' and v'. What is the equation for the points 
that correspond to r = 0?  To r = b?  To r = ∞? 

 
 I found it easiest to invert these two coordinate changes, so ( )lnv b v′= − −  and 

( )lnu b u′= .  We therefore would have  ddu u b u′ ′=  and dv dv b v′ ′= −  so that 
2d d d du v b u v u v′ ′ ′ ′= − .  Notice that, for example, 2 1/2u be u± ±′=  and similarly ( ) 1/22v be v± ′= −  .  

Substituting in, we find 

 

( ) ( ) ( )

( )( )
( )

( )

22 2 2 2 2
2 2 2 2 2

2 2 2 2 22 2 2 2

22
2 2 2 2

2

2
2

2

4 d d d sin d

4 d d 1 d sin d
11

4 d d 1
1

v b u b v b u b

v b u b v b u bv b u b v b u b

b u v e e e eds b
u v e e e ee e e e

b u v u v u vb
u v u vu v u v u v

b u v b
u v

θ θ φ

θ θ φ

− −

− −− −

′ ′  −
= − + + ′ ′− + +

 ′ ′ ′ ′ ′ ′− − −
= − + +  ′ ′ ′ ′− + −′ ′ ′ ′ ′ ′  − − + −

′ ′ ′+
= − +

′ ′−
( )

2
2 2 2d sin d .

1
u v
u v

θ θ φ
′  + ′ ′− 

 



It was a mess for a while, but it simplified rather nicely.  Now, we want to know what the 
various coordinates correspond to.  We know that the coefficient of ( )2 2 2d sin dθ θ φ+  is r2, so 
obviously  

 1
1

u vr b
u v
′ ′+

=
′ ′−

 

The points corresponding to r = 0 are when 1 0u v′ ′+ = , which is the double hyperbola 1u v′ ′ = − .  
The points corresponding to r = b are when 0u v′ ′ = , which is the crossed lines 0u′ =  and 0v′ = .  
And infinity comes from when the denominator vanishes, or 1u v′ ′ = + . 
 

(e) Define new coordinates tanu u′ ′′= , tanv v′ ′′= .  Write the metric in terms of u′′  and 
v′′ .  For this final step, eliminate b and go back to Λ for the metric. 

 
 For this step, we note that the overall metric is just proportional to 2 3b = Λ , so we just 
put that on the outside.  These formulas are trivial to invert, tanu u′ ′′=  and tanv v′ ′′= , so we 
find 

 

( )
( )

( )

22 2
2 2 2 2

2

2

2

3 4sec sec d d 1 tan tan d sin d
1 tan tan1 tan tan

3 4d d cos cos sin sin d
cos cos sin sincos cos sin sin

u v u v u vds
u vu v

u v u v u v
u v u vu v u v

θ θ φ

θ

 ′′ ′′ ′′ ′′ ′′ ′′+ = − + +  ′′ ′′Λ −′′ ′′  −  

′′ ′′ ′′ ′′ ′′ ′′+ = − +  ′′ ′′ ′′ ′′Λ −′′ ′′ ′′ ′′  −
( )

( )( )
( )

2 2 2

2 2 2 2

2

sin d

4d d cos d sin d3
cos

u v u v
u v

θ φ

θ θ φ

 
+ 

  
′′ ′′ ′′ ′′− + − +

=
′′ ′′Λ +

 

Again, it was a mess at intermediate steps, but it wasn’t so bad in the end.  The final formula for 
r is  

 ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

1 tan tan cos cos sin sin cos
.

1 tan tan cos cos sin sin cos
u v u v u v u v

r b b b
u v u v u v u v
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + −

= = =
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′− − +

 

 
(f) Make a final change of coordinates to , ,u v R T′′ ′′ → , where ( )1

2v T R′′ = +  and 

( )1
2u T R′′ = − .  Write the metric in terms of T and R.  In (T,R) space, where are the 

locations r = 0, b, and ∞?  Make a Penrose diagram in (T,R) coordinates, with these 
three values of r marked as one or more lines. 

 
 It is pretty easy so see that ( )2 21

4d  d d dv u R T′′ ′′ = − , that u v R′′ ′′− = −  and u v T′′ ′′+ = , so 

 
( )( )
( )

2 2 2 2 2 2
2

2

cos d sin d3 .
cos

dT dR R
ds

T
θ θ φ− + + +

= ⋅
Λ

 



The radial coordinate is given by ( )
( )

cos
cos

Rr
b T
= .  From this we can 

see that r = 0 happens when ( )cos 0R = , which is 1
2R π= ± , r = ∞ 

is when ( )cos 0T = , which is when 1
2T π= ± , and r b=  when 

( ) ( )cos cosR T= , which, since cosine is an even function, 
happens when R T= ± .  At right is the Penrose diagram, a square 
with the left and right boundaries corresponding to r = 0, top and 
bottom to r = ∞, and the two diagonals are r = b. 

 

Possibly Helpful Formulas: 1 2
2 2

1 tanh , tanh sechdx x d
b x b b d

ψ ψ
ψ

−  = = −  ∫  

 
( ) ( ) ( ) ( ) ( )

2 2 2tanh sech 1, tanh , sech ,

cos cos cos sin sin

e e
e e e e

ψ ψ

ψ ψ ψ ψψ ψ ψ ψ

α β α β α β

−

− −

−
+ = = =

+ +
± = 

 

r = ∞ 

r = ∞ 

r =
 0

 r = 0 

r = b 

r = b 


