Physics 780 - General Relativity

Solution Set V

52. In class we demonstrated that a general gravity wave can be written as $h_{\mu \nu}(x)=h_{\mu \nu} e^{i k \cdot x}+h_{\mu \nu}^{*} \nu^{-i k \cdot x}$, where $h_{\mu \nu}$ is a complex tensor which is assumed to be spacelike only $h_{0 v}=0$, and transverse so $k_{\mu} h^{\mu \nu}=0$. Let's assume it is traveling in the $+\boldsymbol{z}$ direction, so $k^{\mu}=(k, 0,0, k)$.
(a) Substitute this expression into the formula for the gravitational stress-energy in this case, $8 \pi G t_{\mu \nu}=-\frac{1}{2} h^{\alpha \sigma} \partial_{\mu} \partial_{\nu} h_{\alpha \sigma}-\frac{1}{4} \partial_{\mu} h^{\alpha \sigma} \partial_{\nu} h_{\alpha \sigma}$.

We simply substitute it in and start simplifying, so we have

$$
\begin{aligned}
8 \pi G t_{\mu \nu}= & -\frac{1}{2}\left(h^{\alpha \sigma} e^{i k \cdot x}+h^{* \alpha \sigma} e^{-i k \cdot x}\right) \partial_{\mu} \partial_{\nu}\left(h_{\alpha \sigma} e^{i k \cdot x}+h_{\alpha \sigma}^{*} e^{-i k \cdot x}\right) \\
& -\frac{1}{4} \partial_{\mu}\left(h^{\alpha \sigma} e^{i k \cdot x}+h^{* \alpha \sigma} e^{-i k \cdot x}\right) \partial_{\nu}\left(h_{\alpha \sigma} e^{i k \cdot x}+h_{\alpha \sigma}^{*} e^{-i k \cdot x}\right) \\
& =\frac{1}{2} k_{\mu} k_{\nu}\left(h^{\alpha \sigma} e^{i k \cdot x}+h^{* \alpha \sigma} e^{-i k \cdot x}\right)\left(h_{\alpha \sigma} e^{i k \cdot x}+h_{\alpha \sigma}^{*} e^{-i k \cdot x}\right) \\
& +\frac{1}{4} k_{\mu} k_{v}\left(h^{\alpha \sigma} e^{i k \cdot x}-h^{* \alpha \sigma} e^{-i k \cdot x}\right)\left(h_{\alpha \sigma} e^{i k \cdot x}-h_{\alpha \sigma}^{*} e^{-i k \cdot x}\right) \\
& =\frac{1}{4} k_{\mu} k_{v}\left(3 h^{\alpha \sigma} h_{\alpha \sigma} e^{2 i k \cdot x}+3 h^{* \alpha \sigma} h_{\alpha \sigma}^{*} e^{-2 i k \cdot x}+h^{* \alpha \sigma} h_{\alpha \sigma}+h^{\alpha \sigma} h_{\alpha \sigma}^{*}\right) .
\end{aligned}
$$

(b) Some of the terms now have no space dependance, and others go like $e^{ \pm 2 i k \cdot x}$. Argue that the terms like $e^{ \pm 2 i k \cdot x}$ will average to zero if you time average (what is the average value of $\cos (2 \omega t)$ and $\sin (2 \omega t)$?).

These terms have expressions like $\cos (2 \omega t)$ and $\sin (2 \omega t)$, which have an average value of zero, and hence are irrelevant. Hence the only relevant terms are the remaining ones, which looks like $8 \pi G\left\langle t_{\mu \nu}\right\rangle=\frac{1}{2} k_{\mu} k_{\nu} h_{\alpha \sigma}^{*} h^{\alpha \sigma}$. Nice and simple!
(c) Write an explicit expression for the time-averaged value of $\left\langle t^{30}\right\rangle$ in terms of $h_{\mu \nu}$ and $h_{\mu \nu}^{*}$.

Since $k^{3}=\omega$, we have $8 \pi G\left\langle t^{30}\right\rangle=\frac{1}{2} k^{3} k^{0} h_{\alpha \sigma}^{*} h^{\alpha \sigma}=\frac{1}{2} \omega^{2} h_{\alpha \sigma}^{*} h^{\alpha \sigma}$.
(d) If we write $h_{\mu \nu}=h_{+} e_{\mu \nu}^{+}+h_{\times} e_{\mu \nu}^{\times}$, write $\left\langle t^{30}\right\rangle$ explicitly in terms of h^{+}and h^{\times}.

The non-zero components of the two polarization tensors are $e_{11}^{+}=-e_{22}^{+}=1$ and $e_{11}^{\times}=e_{21}^{\times}=1$. It is easy to see that these are real, and that $e_{i j}^{+} e_{i j}^{+}=e_{i j}^{\times} e_{i j}^{\times}=2$, while $e_{i j}^{+} e_{i j}^{\times}=0$. We therefore have

$$
\begin{aligned}
8 \pi G\left\langle t^{30}\right\rangle & =\frac{1}{2} \omega^{2} h_{\alpha \sigma}^{*} h^{\alpha \sigma}=\frac{1}{2} \omega^{2}\left(h_{+}^{*} e_{i j}^{+}+h_{\times}^{*} e_{i j}^{\times}\right)\left(h_{+} e_{i j}^{+}+h_{\times} e_{i j}^{\times}\right) \\
& =\frac{1}{2} \omega^{2}\left(h_{+}^{*} h_{+} e_{i j}^{+} e_{i j}^{+}+h_{+}^{*} h_{\times} e_{i j}^{+} e_{i j}^{\times}+h_{\times}^{*} h_{+} e_{i j}^{\times} e_{i j}^{+}+h_{\times}^{*} h_{\times} e_{i j}^{\times} e_{i j}^{\times}\right)=\frac{1}{2} \omega^{2}\left(2 h_{+}^{*} h_{+}+0+0+2 h_{\times}^{*} h_{\times}\right), \\
\left\langle t^{30}\right\rangle & =\frac{\omega^{2}}{8 \pi G}\left(\left|h_{+}\right|^{2}+\left|h_{\times}\right|^{2}\right) .
\end{aligned}
$$

53. In class we found the following expressions for the magnitude of the gravitational waves in terms of quadrupole moments:

$$
h^{00}=k_{i} k_{j} Q^{i j}+\omega^{2} Q^{i i}, \quad h^{0 i}=h^{i 0}=2 Q^{i j} \omega k_{j}, \quad h^{i j}=2 \omega^{2} Q^{i j}+\delta^{i j}\left(k_{\ell} k_{m} Q^{\ell m}-\omega^{2} Q^{\ell \ell}\right)
$$

The four-vector \boldsymbol{k} is given by $k^{\mu}=(\omega, \mathbf{k})$, with $\omega=|\mathbf{k}|$.
(a) As a warm-up, find the trace $h^{\mu}{ }_{\mu}=\eta_{\mu \nu} h^{\mu \nu}$.

We have

$$
h_{\mu}^{\mu}=\eta_{\mu \nu} h^{\mu \nu}=-h^{00}+h^{i i}=-k_{i} k_{j} Q^{i j}-\omega^{2} Q^{i i}+2 \omega^{2} Q^{i i}+3\left(k_{\ell} k_{m} Q^{\ell m}-\omega^{2} Q^{\ell \ell}\right)=2 k_{i} k_{j} Q^{i j}-2 \omega^{2} Q^{i i} .
$$

(b) We now want to start checking the harmonic condition $k_{\mu} h^{\mu \nu}=\frac{1}{2} k^{\nu} h_{\mu}^{\mu}$. Check this for the time component $v=0$.

We will work out both sides until the expression is manifestly true:

$$
\begin{gathered}
k_{\mu} h^{\mu 0}=\frac{1}{2} k^{0} h^{\mu}{ }_{\mu}, \\
k_{0} h^{00}+k_{i} h^{i 0}=\frac{1}{2} k^{0}\left(2 k_{i} k_{j} Q^{i j}-2 \omega^{2} Q^{i i}\right), \\
-\omega k_{i} k_{j} Q^{i j}-\omega^{3} Q^{i i}+2 \omega k_{i} Q^{i j} k_{j}=\omega k_{i} k_{j} Q^{i j}-\omega^{3} Q^{i i} .
\end{gathered}
$$

At this point it is pretty easy to see it is true.
(c) Now check it for the space components, $v=j$.

We substitute in again, as before

$$
\begin{gathered}
k_{\mu} h^{\mu j}=\frac{1}{2} k^{j} h^{\mu}{ }_{\mu}, \\
k_{0} h^{0 j}+k_{i} h^{i j}=\frac{1}{2} k^{j}\left(2 k_{i} k_{\ell} Q^{i \ell}-2 \omega^{2} Q^{i i}\right), \\
-2 \omega^{2} k_{i} Q^{i j}+k_{i}\left(2 \omega^{2} Q^{i j}\right)+k_{j}\left(k_{\ell} k_{m} Q^{\ell m}-\omega^{2} Q^{\ell \ell}\right)=k_{j}\left(k_{i} k_{\ell} Q^{i \ell}-\omega^{2} Q^{i i}\right)
\end{gathered}
$$

The first two terms cancel, and other than some slight relabeling, the remaining terms are identical on the two sides of the equation, so we are done.

