Physics 780 - General Relativity

Homework Set W

54. [10] In class I assumed the identity $\int T^{0 i}(x) x^{j} d^{3} \mathbf{x}=\int T^{0 j}(x) x^{i} d^{3} \mathbf{x}$. This isn't quite true, but it is close to true.
(a) Call the difference between these two expressions $J^{i j}$. Write an expression for the time derivative of $J^{i j}$.
(b) Use the identity $\partial_{0} T^{0 \alpha}=-\partial_{k} T^{k \alpha}$ to rewrite the integrals as space derivatives.

This is pretty straightforward. We have

$$
\begin{aligned}
\partial_{0} J^{i j} & =\int\left[T^{0 i}(x) x^{j}-T^{0 j}(x) x^{i}\right] d^{3} \mathbf{x}=\int\left[\partial_{0} T^{0 i}(x) x^{j}-\partial_{0} T^{0 j}(x) x^{i}\right] d^{3} \mathbf{x} \\
& =\int\left[-\partial_{k} T^{k i}(x) x^{j}-\partial_{k} T^{k j}(x) x^{i}\right] d^{3} \mathbf{x}
\end{aligned}
$$

(c) Integrate these expression by parts. Since we are going to assume T vanishes at sufficient distances, the surface terms vanish. Simplify the remaining derivatives by using $\partial_{k} x^{\ell}=\delta_{k}^{\ell}$, and do the sum over \boldsymbol{k}.

Integrating by parts, and ignoring surface terms, we have

$$
\begin{aligned}
\partial_{0} J^{i j} & =\int_{s}\left[-T^{k i}(x) x^{j}+T^{k j}(x) x^{i}\right] d S+\int\left[T^{k i}(x) \partial_{k} x^{j}-T^{k j}(x) \partial_{k} x^{i}\right] d^{3} \mathbf{x} \\
& =\int\left[T^{k i}(x) \delta_{k}^{j}-T^{k j}(x) \delta_{k}^{i}\right] d^{3} \mathbf{x}=\int\left[T^{j i}(x)-T^{i j}(x)\right] d^{3} \mathbf{x}=0 .
\end{aligned}
$$

We note that at the last step we had to take advantage of the fact that $T^{i j}$ is symmetric. This is one of the reasons it is so desirable to have a symmetric stress-energy tensor.
(d) Show that $J^{i j}$ is constant. Since we are focusing on the portion of the integrals that oscillate, this means that any oscillating component satisfies
$\int T^{0 i}(x) x^{j} d^{3} \mathbf{x}=\int T^{0 j}(x) x^{i} d^{3} \mathbf{x}$.
We basically just proved it is constant, which means it has no oscillating part.
55. [15] We had some angular integrals that needed to be done, of the form $\int d \Omega, \int k_{i} k_{j} d \Omega$ and $\int k_{i} k_{j} k_{\ell} k_{m} d \Omega$, where $\int d \Omega \equiv \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta$.
(a) Find $\int d \Omega$. This part of the problem is completely different from the remaining parts.

We simply do the easy integral, which is

$$
\int d \Omega=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=-\left.\cos \theta\right|_{0} ^{\pi}(2 \pi)=2 \cdot \pi=4 \pi
$$

(b) To find $\int k_{i} k_{j} d \Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. The only tensors in 2D that are invariant are $\delta_{i j}$ and $\tilde{\varepsilon}_{i j k}$ and combinations of them. Argue that the result must be proportional to $\delta_{i j}$. Call the constant of proportionality A.

This integral must be an invariant tensor with two indices; the only such tensor is $\delta_{i j}$. It also must be symmetric, which it is. Hence $\int k_{i} k_{j} d \Omega=A \delta_{i j}$.
(c) Multiply the integral in part (b) by $\delta_{i j}$ summing over \boldsymbol{i} and \boldsymbol{j}, and use the identity $\mathbf{k}^{2}=\omega^{2}$ to simplify. Determine A.

We have

$$
\begin{aligned}
& \delta_{i j} \int k_{i} k_{j} d \Omega=A \delta_{i j} \delta_{i j}, \\
& \int \mathbf{k}^{2} d \Omega=3 A, \\
& 4 \pi \omega^{2}=3 A, \\
& A=\frac{4}{3} \pi \omega^{2} .
\end{aligned}
$$

(d) To find $\int k_{i} k_{j} k_{\ell} k_{m} d \Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. Argue that the result must be proportional to $\delta_{i j} \delta_{\ell m}+\delta_{i \ell} \delta_{j m}+\delta_{i m} \delta_{j \ell}$. Call the constant of proportionality \boldsymbol{B}.

This time we need an invariant tensor with four indices. The only possible tensors are $\delta_{i j} \delta_{\ell m}, \delta_{i \ell} \delta_{j m}$ and $\delta_{i m} \delta_{j \ell}$. However, it must also be symmetric under any interchange of indices, and the only such tensor is $\delta_{i j} \delta_{\ell m}+\delta_{i \ell} \delta_{j m}+\delta_{i m} \delta_{j \ell}$, so

$$
\int k_{i} k_{j} k_{\ell} k_{m} d \Omega=B\left(\delta_{i j} \delta_{\ell m}+\delta_{i \ell} \delta_{j m}+\delta_{i m} \delta_{j \ell}\right)
$$

(e) Do something similar to what you did in part (c) and use the identity $\mathbf{k}^{2}=\omega^{2}$ to simplify and determine B.

This time it is not clear what to do, but we can try multiplying by $\delta_{i j}$ and see if it works:

$$
\begin{gathered}
\delta_{i j} \int k_{i} k_{j} k_{\ell} k_{m} d \Omega=B\left(\delta_{i j} \delta_{\ell m} \delta_{i j}+\delta_{i \ell} \delta_{j m} \delta_{i j}+\delta_{i m} \delta_{j \ell} \delta_{i j}\right), \\
\int \mathbf{k}^{2} k_{\ell} k_{m} d \Omega=B\left(3 \delta_{\ell m}+\delta_{\ell m}+\delta_{\ell m}\right) \\
\omega^{2} \int k_{\ell} k_{m} d \Omega=5 B \delta_{\ell m} \\
\omega^{2} \frac{4}{3} \pi \omega^{2} \delta_{\ell m}=5 B \delta_{\ell m} \\
B=\frac{4}{15} \pi \omega^{4}
\end{gathered}
$$

We used the integral found in part (b) at the penultimate step. We therefore have

$$
\int k_{i} k_{j} k_{\ell} k_{m} d \Omega=\frac{4}{15} \pi \omega^{4}\left(\delta_{i j} \delta_{\ell m}+\delta_{i \ell} \delta_{j m}+\delta_{i m} \delta_{j \ell}\right)
$$

