
Physics 780 – General Relativity 
Solution Set X 

 
56. [25] Suppose we have two non-relativistic objects of mass M 

orbiting each other in circular orbits with a separation a (so the 
radius of the orbit is a/2). 
(a) Since the objects are non-relativistic, we can use Newtonian 

approximations.  By equating the gravitational force to the 
centripetal force ( )2 2F M aω= , find a formula for the 
angular velocity for the orbit ω . 

 
 The gravitational force between the two objects is 2 2GM a .  The centripetal force 
required to keep them moving in a circle of radius 2r a=  is ( )2 2M aω . Equating these two 
quantities, we have 
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(b) Write the position of each particle, assuming they are orbiting in the xy-plane about 

the origin, as a function of time. 
 
 The positions of the particles can be written as ( )1

2 cosx a tω= ±  and ( )1
2 siny a tω= ± , 

with the ± denoting which of the two particles we are talking about. 
 

(c) Find the moments i j
ij a a aa

Q m x x=∑  as a function of time. 
 
 We have 
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(d) Rewrite ( )ijQ t  as a constant term plus oscillatory terms.  What is the frequency of 
the oscillatory terms?  Write the oscillating terms as 

( ) ( ) *constant i t i t
ij ij ijQ t Q e Q eω ω−= + + . 

 
 We can write the moments using double-angle formulas as 
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The non-oscillating coefficients are then 21
8xxQ Ma= , 21

8yyQ Ma= − , and 21
8xy yxQ Q iMa= = .  

Note that the frequency is 2ω . 
 

(e) Find the power radiated 6 5 *2
5 ij ijP G c Q Qω −= . 

 
 The formula should have 2* 1

3ij ij iiQ Q Q− , but the trace in this case is zero, so it doesn’t 
contribute.  Putting everything together, we have 
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We now substitute the equation from part (a) to eliminate ω, to yield 
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(f) Find total energy E K V= + , where the potential energy is 2V GM a= − , and K is 

the sum of the two potential energies, each of which is ( )21
2 2aK M aω= .  You 

should find that the potential energy is exactly twice as big as the kinetic term (and 
of opposite sign). 

 
 This is straightforward, so 
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(g) Find a formula for the characteristic time E Pτ =  it will take for the orbit to 

decay to radius zero. Evaluate it for 301.989 10  kgSunM M= = ×  and 42 10 kma = × . 
 
 Dividing our two formulas, we have 
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A more careful analysis will show that the actual time is one-fourth of this value (because it 
radiates faster as the two stars spiral towards each other), so it is more like fifty years. 


