## Physics 780 - General Relativity

## Solution Set X

56. [25] Suppose we have two non-relativistic objects of mass $M$ orbiting each other in circular orbits with a separation $a$ (so the radius of the orbit is $a / 2$ ).
(a) Since the objects are non-relativistic, we can use Newtonian approximations. By equating the gravitational force to the centripetal force $F=M \omega^{2}(a / 2)$, find a formula for the angular velocity for the orbit $\omega$.


The gravitational force between the two objects is $G M^{2} / a^{2}$. The centripetal force required to keep them moving in a circle of radius $r=a / 2$ is $M \omega^{2}(a / 2)$. Equating these two quantities, we have

$$
\begin{aligned}
& \frac{G M^{2}}{a^{2}}=\frac{M \omega^{2} a}{2}, \\
& \omega^{2}=\frac{2 G M}{a^{3}}
\end{aligned}
$$

(b) Write the position of each particle, assuming they are orbiting in the $x y$-plane about the origin, as a function of time.

The positions of the particles can be written as $x= \pm \frac{1}{2} a \cos (\omega t)$ and $y= \pm \frac{1}{2} a \sin (\omega t)$, with the $\pm$ denoting which of the two particles we are talking about.
(c) Find the moments $Q_{i j}=\sum_{a} m_{a} x_{a}^{i} x_{a}^{j}$ as a function of time.

We have

$$
\begin{aligned}
Q_{x x} & =m_{1} x_{1}^{2}+m_{2} x_{2}^{2}=M\left[\frac{1}{2} a \cos (\omega t)\right]^{2}+M\left[-\frac{1}{2} a \cos (\omega t)\right]^{2}=\frac{1}{2} M a^{2} \cos ^{2}(\omega t), \\
Q_{y y} & =m_{1} y_{1}^{2}+m_{2} y_{2}^{2}=M\left[\frac{1}{2} a \sin (\omega t)\right]^{2}+M\left[-\frac{1}{2} a \sin (\omega t)\right]^{2}=\frac{1}{2} M a^{2} \sin ^{2}(\omega t), \\
Q_{x y} & =Q_{y x}=m_{1} x_{1} y_{1}+m_{2} x_{2} y_{2}=M\left[\frac{1}{2} a \cos (\omega t)\right]\left[\frac{1}{2} a \sin (\omega t)\right]+M\left[-\frac{1}{2} a \cos (\omega t)\right]\left[-\frac{1}{2} a \sin (\omega t)\right] \\
& =\frac{1}{2} M a^{2} \cos (\omega t) \sin (\omega t) .
\end{aligned}
$$

(d) Rewrite $Q_{i j}(t)$ as a constant term plus oscillatory terms. What is the frequency of the oscillatory terms? Write the oscillating terms as
$Q_{i j}(t)=($ constant $)+Q_{i j} e^{-i \omega t}+Q_{i j}^{*} e^{i \omega t}$.
We can write the moments using double-angle formulas as

$$
\begin{aligned}
& Q_{x x}=\frac{1}{4} M a^{2}[1+\cos (2 \omega t)]=\frac{1}{4} M a^{2}+\frac{1}{8} M a^{2} e^{-2 i \omega t}+\frac{1}{8} M a^{2} e^{2 i \omega t}, \\
& Q_{y y}=\frac{1}{4} M a^{2}[1-\cos (2 \omega t)]=\frac{1}{4} M a^{2}-\frac{1}{8} M a^{2} e^{-2 i \omega t}-\frac{1}{8} M a^{2} e^{2 i \omega t}, \\
& Q_{x y}=Q_{y x}=\frac{1}{4} M a^{2} \sin (2 \omega t)=\frac{i}{8} M a^{2} e^{-2 i \omega t}-\frac{i}{8} M a^{2} e^{2 i \omega t} .
\end{aligned}
$$

The non-oscillating coefficients are then $Q_{x x}=\frac{1}{8} M a^{2}, Q_{y y}=-\frac{1}{8} M a^{2}$, and $Q_{x y}=Q_{y x}=\frac{1}{8} i M a^{2}$. Note that the frequency is $2 \omega$.
(e) Find the power radiated $P=\frac{2}{5} G \omega^{6} c^{-5} Q_{i j}^{*} Q_{i j}$.

The formula should have $Q_{i j}^{*} Q_{i j}-\frac{1}{3}\left|Q_{i i}\right|^{2}$, but the trace in this case is zero, so it doesn't contribute. Putting everything together, we have

$$
\begin{aligned}
P & =\frac{2}{5} G \omega_{r}^{6} c^{-5}\left(Q_{i j}^{*} Q_{i j}-\frac{1}{3} Q_{i i}^{*} Q_{i j}\right)=\frac{2}{5} G(2 \omega)^{6} c^{-5}\left[\left(\frac{1}{8} M a^{2}\right)^{2}+\left(\frac{1}{8} M a^{2}\right)^{2}+\left(\frac{1}{8} M a^{2}\right)^{2}+\left(\frac{1}{8} M a^{2}\right)^{2}\right] \\
& =\frac{2}{5} \cdot 64 \cdot \frac{1}{64} \cdot 4 G \omega^{6} M^{2} a^{4} c^{-5}=\frac{8}{5} G \omega^{6} M^{2} a^{4} c^{-5}
\end{aligned}
$$

We now substitute the equation from part (a) to eliminate $\omega$, to yield

$$
P=\frac{8}{5} G\left(\frac{2 G M}{a^{3}}\right)^{3} M^{2} a^{4} c^{-5}=\frac{64 G^{4} M^{5}}{5 c^{5} a^{5}} .
$$

(f) Find total energy $E=K+V$, where the potential energy is $V=-G M^{2} / a$, and $K$ is the sum of the two potential energies, each of which is $K_{a}=\frac{1}{2} M(\omega a / 2)^{2}$. You should find that the potential energy is exactly twice as big as the kinetic term (and of opposite sign).

This is straightforward, so

$$
\begin{aligned}
E & =K+V=2 \cdot \frac{1}{2} M v^{2}-\frac{G M^{2}}{a}=M\left(\frac{\omega a}{2}\right)^{2}-\frac{G M^{2}}{a}=\frac{M a^{2}}{4} \cdot \frac{2 G M}{a^{3}} \\
& =\frac{G M^{2}}{2 a}-\frac{G M^{2}}{a}=-\frac{G M^{2}}{2 a} .
\end{aligned}
$$

(g) Find a formula for the characteristic time $\tau=|E| / P$ it will take for the orbit to decay to radius zero. Evaluate it for $M=M_{S u n}=1.989 \times 10^{30} \mathrm{~kg}$ and $a=2 \times 10^{4} \mathrm{~km}$.

Dividing our two formulas, we have

$$
\begin{aligned}
\tau & =\frac{|E|}{P}=\frac{G M^{2}}{2 a} \frac{5 c^{5} a^{5}}{64 G^{4} M^{5}}=\frac{5 c^{5} a^{4}}{128 G^{3} M^{3}} \\
& =\frac{5\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{5}\left(2 \times 10^{7} \mathrm{~m}\right)^{4}}{128\left(6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)^{3}\left(1.989 \times 10^{30} \mathrm{~kg}\right)^{3}}=6.47 \times 10^{9} \mathrm{~s}=205 \text { years }
\end{aligned}
$$

A more careful analysis will show that the actual time is one-fourth of this value (because it radiates faster as the two stars spiral towards each other), so it is more like fifty years.

