Problems 29-31

29. An object is dropped from rest at infinity directly into a Schwarzschild metric, which we will assume is valid all the way to \(r = 0 \).
(a) What is the initial “energy” \(E \) and “angular momentum” \(L \)? Calculate a formula for \(u^r = dr/d\tau \) as a function of \(r \). Also, find a formula for \(dr/dt \).
(b) Integrate the equation you found in (a) to find the proper time \(\tau \) it takes to fall from arbitrary \(r \) to the origin.
(c) Show that the coordinate time \(t \) it takes to fall from arbitrary \(r \) to just the “event horizon” at \(2GM \) is, in contrast, infinite.

30. An incautious traveler has just passed the Schwarzschild radius, so he is now just inside \(r = 2GM \) and moving inwards, \(u^r < 0 \). Using the fact that \(u^a u_a = -1 \), show that even if he is allowed to accelerate, he can never stop falling in (i.e., he can’t have \(u^r = 0 \)), that the magnitude of \(|u^r| \) will have a minimum value as a function of \(r \), and find the maximum proper time before his world line terminates, i.e., he reaches \(r = 0 \).

31. Although four-velocity doesn’t exactly apply to photons, we can define an affine parameter \(\lambda \) along the photon’s path, and then define \(u^a = dx^a/d\lambda \). The geodesic equation for \(u^a \) is the same as usual \(du^a/d\lambda = -\Gamma^a_{\mu\nu} u^\mu u^\nu \), and therefore in the Schwarzschild metric, \(u_t = -E \) and \(u_\phi = L \) will still be conserved. Our goal in this problem is to find the cross-section for a photon to be absorbed by a black hole.
(a) Use the fact that \(u^a u_a = 0 \) for photons to find a formula for \(u^r \) for a photon as a function of \(r, E, L, \) and \(M \).
(b) The formula you just found should have \((u^r)^2 = \infty \) at \(r = 0 \), then it should falls for a while, and then rises again to its ultimate value at \(r = \infty \). It therefore has a global minimum somewhere in between. Find the value of \(r \) where this occurs, and find the value of \((u^r)^2 \) there, as a function of \(L, E, \) and \(M \).
(c) If the value you found in part (b) is positive, then \(u^r \) never vanishes, which means the photon continues all the way to the singularity at \(r = 0 \). If the value you found is negative, then it must have been zero somewhere, and therefore the photon must have turned around and left again. For what values of \(L \) is the photon absorbed?
(d) A photon comes in from infinity, such that it has an impact parameter of \(b \); that is, were it not for gravity, it would miss the black hole by a distance \(b \). What is the quantity \(L \) for this photon in terms of \(b \) and \(E \)? (this can be calculated far away, when gravity is negligible)? Find the cross section of the black hole for photons.