Solutions to Problems 44-47

44. In class, when demonstrating conservation of the stress-energy tensor, I used the relationship

\[\frac{1}{2} T^{\mu\nu} \left(\xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\nu} \partial_\mu \xi^\alpha + g_{\mu\alpha} \partial_\nu \xi^\alpha \right) = T^{\mu\nu} \nabla_\mu \xi_\nu \]

Fill in the missing steps.

\[\frac{1}{2} T^{\mu\nu} \left(\xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\nu} \partial_\mu \xi^\alpha + g_{\mu\alpha} \partial_\nu \xi^\alpha \right) = T^{\mu\nu} \left(\frac{1}{2} \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\nu} \partial_\mu \xi^\alpha \right) \]

\[= T^{\mu\nu} \left(\frac{1}{2} \xi^\alpha \partial_\alpha g_{\mu\nu} + g_{\alpha\nu} \nabla_\mu \xi^\alpha - g_{\alpha\nu} \frac{1}{2} \xi^\alpha \right) \]

\[= T^{\mu\nu} \left[\frac{1}{2} \xi^\alpha \partial_\alpha g_{\mu\nu} + \nabla_\mu \xi^\alpha \right] - \frac{1}{2} \xi^\beta \left(\partial_\beta g_{\mu\nu} + \partial_\mu g_{\beta\nu} - \partial_\nu g_{\beta\mu} \right) \]

\[= T^{\mu\nu} \nabla_\mu \xi_\nu \]

45. Show that the variation of the inverse metric is related to the variation of the metric by

\[\delta g^{\mu\nu} = -g^{\mu\alpha} g^{\nu\beta} \delta g_{\alpha\beta}. \]

The inverse metric is defined by \(g^{\alpha\beta} g_{\beta\gamma} = \delta^\alpha_\gamma \). For the perturbed metric, we have

\[\delta \xi^\gamma = \left(g^{\alpha\beta} + \delta g^{\alpha\beta} \right) \left(g_{\beta\gamma} + \delta g_{\beta\gamma} \right) = \delta \xi^\gamma + \delta g_a^{\alpha\beta} \delta g_{\beta\gamma}, \]

\[\delta g^{\alpha\beta} g_{\beta\gamma} = -g^{\alpha\beta} \delta g_{\beta\gamma}, \]

\[\delta g_{\alpha\beta} g^\gamma_\gamma = -g^{\alpha\beta} g^\gamma_\gamma \delta g_{\beta\gamma}, \]

\[\delta g_{\alpha\beta} = -g^{\alpha\beta} g^\gamma_\gamma \delta g_{\beta\gamma}. \]

46. The Lagrangian density for the electromagnetic field is

\[\mathcal{L} = -\frac{1}{4} \varepsilon_0 F_{\mu\nu} F^{\mu\nu}, \]

where the fields \(F \) are defined as \(F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu = \nabla_\mu A_\nu - \nabla_\nu A_\mu \) and \(F^{\mu\nu} \equiv g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta} \). Show that the Euler-Lagrange equations yield the standard source-free Maxwell equations, \(\varepsilon_0 \nabla_\mu F^{\mu\nu} = 0 \).

\(\partial \mathcal{L} / \partial A_\mu \) vanishes, because \(A \) appears nowhere without a derivative. To find the other term, we take
Substituting this into the Euler-Lagrange equations, we have

\[0 = \frac{\partial L}{\partial A_v} = \nabla \frac{\partial L}{\partial \nabla A_v} = -\varepsilon_0 \nabla F^{\mu \nu} \]

Up to overall sign, this is identical to the formula we want.

47. Show that for the Lagrangian density in problem 46, the stress-energy tensor for the electromagnetic field is

\[T^{\mu \nu} = \varepsilon_0 \left(F^\mu_a F^{\nu a} - \frac{1}{4} g^{\mu \nu} F^{ab} F_{ab} \right) \]

Our action is

\[S[A,g] = -\frac{1}{4} \varepsilon_0 \int d^4x \sqrt{-g} g^{\mu \nu} g^{\beta \delta} F_{a \beta} F_{\gamma \delta} \]

Since we can write our fields \(F \) with ordinary derivatives, there are no metric elements lurking in \(F \) factors. We already know how to vary each of the factors that appears in this case, namely,

\[\sqrt{-g} \rightarrow \sqrt{-g} \left(1 + \frac{1}{4} g^{\mu \nu} \delta g_{\mu \nu} \right), \quad \text{and} \quad g^{\alpha \gamma} \rightarrow g^{\alpha \gamma} - g^{\mu \nu} g^{\beta \delta} \delta g_{\mu \nu} \]

Making these substitutions, we see that

\[S[A,g + \delta g] = -\frac{1}{4} \varepsilon_0 \int d^4x \sqrt{-g} \left[\left(1 + \frac{1}{4} g^{\mu \nu} \delta g_{\mu \nu} \right) \left(g^{\alpha \gamma} - g^{\mu \nu} g^{\beta \delta} \delta g_{\mu \nu} \right) \right] \]

\[= S[A,g] - \frac{1}{4} \varepsilon_0 \int d^4x \delta g_{\mu \nu} \sqrt{-g} \left(\frac{1}{2} g^{\mu \nu} F_{a \beta} F_{a \delta} - F_{a \beta} F_{a \delta} \right) \]

\[= S[A,g] - \frac{1}{4} \varepsilon_0 \int d^4x \delta g_{\mu \nu} \sqrt{-g} \left(\frac{1}{2} g^{\mu \nu} F_{a \beta} F_{a \delta} - F_{a \beta} F_{a \delta} \right) \]

Comparing this with the previous equation, we see that

\[T^{\mu \nu} = -\frac{1}{2} \varepsilon_0 \left(\frac{1}{2} g^{\mu \nu} F_{a \beta} F_{a \delta} - F_{a \beta} F_{a \delta} \right) = \varepsilon_0 \left(F^{\mu \delta} F_{\delta} - \frac{1}{4} g^{\mu \nu} F_{a \beta} F_{a \delta} \right) \]

This is sufficiently similar to the desired relation that we can stop.