Physics 745 - Group Theory
Homework Set 12 Due Monday, February 16

1. Diamond is a version of carbon. The position of the carbon atoms takes the form

$$
\mathbf{r}=d\left(n_{1}+x\right) \hat{\mathbf{x}}+d\left(n_{2}+y\right) \hat{\mathbf{y}}+d\left(n_{3}+z\right) \hat{\mathbf{z}}
$$

where $d=356.683 \mathrm{pm},\left(n_{1}, n_{2}, n_{3}\right)$ are arbitrary integers, and (x, y, z) takes on the following eight values:

$$
(x, y, z) \in\left\{(0,0,0),\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}\right),\left(\frac{3}{4}, \frac{1}{4}, \frac{3}{4}\right),\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right)\right\}
$$

Thus there are eight carbon atoms per cell of size d^{3}.
(a) For what values of (x, y, z) will $\mathbf{T}=d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}}$ be a translation vector; i.e., if there is a carbon atom at \mathbf{r}, there will always be a carbon atom at $\mathbf{r}+\mathbf{T}$? To make your answer finite, only include values with $0 \leq x, y, z<1$.
(b) Find primitive vectors \mathbf{a}, \mathbf{b} and \mathbf{c} such that all translation vectors take the form $\mathbf{T}=m_{1} \mathbf{a}+m_{2} \mathbf{b}+m_{3} \mathbf{c}$, where $\left(m_{1}, m_{2}, m_{3}\right)$ are integers. Demonstrate it explicitly for those vectors you found in part (a) (which will probably be trivial), and also for the three vectors $d \hat{\mathbf{x}}, d \hat{\mathbf{y}}$ and $d \hat{\mathbf{z}}$.
(c) What are the lengths of these vectors a, b, c and the angles between them, α, β, γ ?

