Physics 745 - Group Theory
 Homework Set 22
 Due Monday, March 30

1. It is rare we will actually use the representation matrices $\Gamma^{(j)}(R)$, but occasionally it is useful. We want to work out explicitly $\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))$, generated by the generators

$$
T_{a}=\frac{1}{2} \sigma_{a}, \quad \text { where } \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

We will write \mathbf{x} in the form $\mathbf{x}=x \hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is a unit vector, and x is the magnitude of \mathbf{x}.
(a) Show that $(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{2}=\mathbf{1}$, where $\mathbf{1}$ is the unit matrix, for any unit vector $\hat{\mathbf{r}}$.

Furthermore, find a simplification for $(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{n}$ for arbitrary positive integer n when n is even or odd.
(b) Expand out the representation

$$
\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))=\exp (i \mathbf{T} \cdot \mathbf{x})=\sum_{n=0}^{\infty} \frac{(i \mathbf{T} \cdot \mathbf{x})^{n}}{n!}
$$

dividing it into even and odd terms. Simplify as much as possible
(c) Show that

$$
\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))=\cos \left(\frac{1}{2} x\right)+i \sin \left(\frac{1}{2} x\right) \boldsymbol{\sigma} \cdot \hat{\mathbf{r}}
$$

