Physics 745 - Group Theory Homework Set 25 Due Monday, April 6

1. In the electric dipole approximation, the rate at which an atom decaying from one state to another by the emission of a photon is given by $\Gamma(I \rightarrow F) = \frac{4}{3} \alpha \omega_{IF}^3 |\mathbf{r}_{FI}|^2 / c^2$ where

$$\mathbf{r}_{FI} = \left\langle F \left| \mathbf{r} \right| I \right\rangle$$

The absolute value symbol means that $|\mathbf{r}_{FI}|^2$ contains not only a sum of the three components of **r**, but also the real and imaginary parts.

(a) Demonstrate first that

$$\left|\mathbf{r}_{FI}\right|^{2} = \sum_{q=-1}^{1} \left|\left\langle F \left| r_{q}^{(1)} \right| I \right\rangle\right|^{2}$$

where $r_q^{(1)}$ are the three components of the spherical tensor corresponding to the vector operator **r**.

- (b) An atom in the state $|njm\rangle$ with j = 3/2 is about to decay via dipole radiation. What possible j' values might be allowed for the final state $|n'j'm'\rangle$?
- (c) The atom is actually going to decay to a state with $j' = \frac{1}{2}$. Using the Wigner Eckart Theorem, find the *relative* rate of decay

$$\Gamma(njm \rightarrow n'j'm')$$

for all non-vanishing possible values of m and m'.