1. This problem has to do with demonstrating that according the isospin symmetry, the three $|\Sigma\rangle$'s all have the same mass.
 a) Work out the effects of the isospin operators I_{\pm} on all three of the $|\Sigma\rangle$ states.
 b) Assuming that isospin commutes with the mass portion of the Hamiltonian, show that all four of the $|\Sigma\rangle$'s have the same mass.

2. There is an excited set of two baryons $|N^+\rangle$ and $|N^0\rangle$ that have the same isospin properties of the neutron and proton. They can decay, in principle, into a $|\Delta\pi\rangle$ combination of two particles.
 a) Suppose that the Hamiltonian that performs this transition takes the form
 \[H |N^+\rangle = a |\Delta^{++};\pi^-\rangle + b |\Delta^+;\pi^0\rangle + c |\Delta^0;\pi^+\rangle \]
 Find the relative sizes of the factors a, b, and c. I recommend doing this by letting I_{\pm} act on both sides.
 b) Calculate the relative rate for the decay rates $\Gamma(N^+ \rightarrow \Delta^{++}\pi^-)$, $\Gamma(N^+ \rightarrow \Delta^{+}\pi^0)$, and $\Gamma(N^+ \rightarrow \Delta^0\pi^+)$.
 c) Now I want you to figure out how the N^0 decays. Using isospin symmetry, determine that the same interaction discussed in part (a) also leads to three decay processes for the N^0. Find the relative probability amplitudes for these processes, and predict the corresponding decay rates, and show how they relate to those found in part (b).