Physics 745 - Group Theory Homework Set 27 Due Wednesday, April 15

- 1. This problem has to do with demonstrating that according the isospin symmetry, the three $|\Sigma\rangle$'s all have the same mass.
 - a) Work out the effects of the isospin operators \mathcal{I}_{\pm} on all three of the $|\Sigma\rangle$ states.
 - b) Assuming that isospin commutes with the mass portion of the Hamiltonian, show that all four of the $|\Sigma\rangle$'s have the same mass.
- 2. There is an excited set of two baryons $|N^+\rangle$ and $|N^0\rangle$ that have the same isospin properties of the neutron and proton. They can decay, in principle, into a $|\Delta \pi\rangle$ combination of two particles.
 - a) Suppose that the Hamiltonian that performs this transition takes the form $H|N^+\rangle = a|\Delta^{++};\pi^-\rangle + b|\Delta^+;\pi^0\rangle + c|\Delta^0;\pi^+\rangle$

Find the relative sizes of the factors *a*, *b*, and *c*. I recommend doing this by letting \mathcal{I}_+ act on both sides.

- b) Calculate the relative rate for the decay rates $\Gamma(N^+ \to \Delta^{++}\pi^-)$, $\Gamma(N^+ \to \Delta^+\pi^0)$, and $\Gamma(N^+ \to \Delta^0\pi^+)$.
- c) Now I want you to figure out how the N^0 decays. Using isospin symmetry, determine that the same interaction discussed in part (a) also leads to three decay processes for the N^0 . Find the relative probability amplitudes for these processes, and predict the corresponding decay rates, and show how they relate to those found in part (b).