Physics 745 - Group Theory Homework Set 28 Due Friday, April 17

1. The group $\mathrm{SU}(3)$ contains the group $\mathrm{SU}(2)$ as a subgroup, and in more than one way (a) Show that the generators T_{1}, T_{2} and T_{3} form an $\mathrm{SU}(2)$ subgroup; that is, show that $\left[T_{1}, T_{2}\right]=i T_{3}$, etc. To save time, only do two of the three commutators. How does the 3 representation of $\mathrm{SU}(3)$ break into representations under this subgroup?
(b) Show that the generators $2 T_{2}, 2 T_{5}, 2 T_{7}$ form an $\mathrm{SU}(2)$ subgroup; that is, show that $\left[2 T_{2}, 2 T_{5}\right]=i 2 T_{7}$, etc. To save time, only do two of the three commutators. How does the 3 representation of $\operatorname{SU}(3)$ break into representations under this subgroup?
2. Of the eight generators, two of them can be diagonalized simultaneously (normally chosen as T_{3} and T_{8}). In this problem, you will organize the others into pairs, comparable to the "raising" and "lowering" operators for $\operatorname{SU}(2)$
(a) Combine the remaining six generators, such that the commutation relations of the resulting combinations with T_{3} and T_{8} always come out proportional to the resulting generators. Here is one of them done for you:

$$
T_{A}=T_{1}+i T_{2} \text {, then }\left[T_{3}, T_{A}\right]=+1 T_{A} \text { and }\left[T_{8}, T_{A}\right]=0 T_{A}
$$

(b) For each of the six generators you just worked out, plot on a 2D graph the resulting coefficients when you commute with T_{3} and T_{8}. The first one is done for you. This diagram is called a root diagram.
(comment: technically, a root diagram would also include two zero roots, corresponding to the two generators T_{3} and T_{8} themselves, which commute with each other)

