Physics 745 - Group Theory

Homework Set 30 Due Wednesday, April 20

- 1. The mass of the Ω^- can be predicted in terms of the parameters a and b from eq. (4.36).
 - (a) Find the formula for the Ω^- mass in terms of a and b.
 - (b) Comparing with some of the other formulas, write a formula for the Ω^- mass in terms of some combination of the Δ , Σ^* and/or Ξ^* masses. There is more than one correct answer to this part.
 - (c) Check against the experimental value $m_{\rm O} = 1672 \text{ MeV}/c^2$.
- 2. Equation (4.40) is not complete it doesn't show where all the indices go
 - (a) Write this equation correctly, with all the indices eliminated. You will have to have *three* coefficients in this case, which I called *a*, *b*, and *c*.
 - (b) Find an equation for each of the masses m_K^2 , $m_{\bar{K}}^2$, m_{π}^2 , and m_{η}^2 in terms of a, b, and c.
 - (c) Find a linear equation relating these four masses, *i.e.*, eliminate *a*, *b*, and *c*. Arrange it so only positive coefficients appear on each side of the equation. Check it numerically
 - (d) An identical relationship should exist for the four masses (not masses squared) for the octuplet baryons. Check it numerically as well.