Physics 745 - Group Theory Homework Set 31 Due Friday, April 24

- 1. The Σ^{*0} is part of the 10 of SU(3). There are four possible decays that conserve charge and hypercharge and are kinematically allowed (that means they don't violate conservation of energy and momentum): $\Sigma^0 \pi^0$, $\Sigma^+ \pi^-$, $\Sigma^- \pi^+$, and $\Lambda \pi^0$. Indeed, these decay modes represent the overwhelming majority of the decay modes for the Σ^{*0} .
 - a) In each of the four cases, work out the corresponding matrix element $\langle BM | H | \Sigma^{*0} \rangle$.
 - b) Which of the four "allowed" decays does not actually occur? For each of the other three cases, make a naïve prediction of the relative rate for the decay $\Gamma(\Sigma^{*0} \rightarrow BM)$, and predict the fraction that each decay occurs, which is the decay rate for a given channel divided by the total. (This is called the branching ratio. Because the Λ is noticeably lighter than the Σ 's, the $\Lambda \pi^0$ mode actually is enhanced a bit compared to the naïve prediction).
- 2. The η_{c0} is a heavy, neutral, SU(3) singlet meson. Among its many decay modes, it can decay to two light mesons, $\eta_{c0} \to M'M$.
 - a) Suppose we write the matrix elements for the *M* and *M*' as $|M\rangle = w_j^i |M_i^j\rangle$ and

 $|M'\rangle = u_j^i |M_i^j\rangle$. Write down the form of all possible non-vanishing terms that appear in

 $\langle M'M|H|\eta_{c0}\rangle.$

The η_{c0} has no indices associated with it, because it is an SU(3) singlet.

- b) Calculate the relative size of the matrix element for $|M'M\rangle = |\pi^0\pi^0\rangle$, $|\pi^{\pm}\pi^{\mp}\rangle$, $|K^{\pm}K^{\mp}\rangle$, $|K^0\overline{K}^0\rangle$, $|\overline{K}^0K^0\rangle$, and $|\eta\eta\rangle$ (eight cases in all).
- c) The mesons are so light that their relative masses are irrelevant. Predict the relative decay rates for $\Gamma(\eta_{c0} \to \pi^0 \pi^0)$, $\Gamma(\eta_{c0} \to \pi^+ \pi^-)$, $\Gamma(\eta_{c0} \to K^0 \overline{K}^0)$, $\Gamma(\eta_{c0} \to K^+ K^-)$, and $\Gamma(\eta_{c0} \to \eta \eta)$. In some cases, you will have to add the results of two different decay rates, since $\Gamma(A \to BC)$ is really the sum of $\Gamma(A \to BC)$ and $\Gamma(A \to CB)$.