Solution Set 10

First we are supposed to show that the listed wave functions have the proper boundary conditions; that is, that they vanish at the boundaries. Plugging in the boundary values, we see that at $x = \pm a$ yields a factor of $w_l (\pm \frac{1}{2}\pi l)$. Recalling that cosine vanishes at odd multiples of $\frac{1}{2}\pi$, while sine vanishes at even multiples, we conclude that $\psi_{lmn} (\pm a, y, z) = 0$. Similarly, $y = \pm a$ and $z = \pm b$ yield factors of $w_m (\pm \frac{1}{2}\pi m)$ and $w_n (\pm \frac{1}{2}\pi n)$, both of which vanish, so $\psi_{lmn} (x, \pm a, z) = \psi_{lmn} (x, y, \pm b) = 0$.

First we need to figure out the effect of the various types of operations on the various wave functions. For example, C_4^2 reverses both *x* and *y*, and therefore

$$C_4^2 \psi_{lmn} = \left(-1\right)^{l+m} \psi_{lmn}$$

For representations A_1 , A_2 , B_1 , and B_2 , this tells us that we only build these irreps out of wave functions where l + m is even.

Similarly, C_2 ' can either reverse *x* and *z*, or *y* and *z*. For example, one of the elements has the effect

$$C_{2a}^{\prime}\psi_{lmn}=\left(-1\right)^{l+n}\psi_{lmn}$$

This tells you that for A_1 and B_1 , l+n will be even, while for A_2 and B_2 , they will be odd.

To finish off these four cases, consider C_4 , one element of which exchanges x and y while changing the sign of one of them, so that

$$C_4 \psi_{lmn} = \left(-1\right)^{l+1} \psi_{mln}$$

If we set l = m, for example, we can get the *A*'s by picking *l* odd, and the *B*'s by picking *l* even. This is sufficient to determine the following four categorizations:

$$A_1: \psi_{111}$$
 $A_2: \psi_{112}$ $B_1: \psi_{222}$ $B_2: \psi_{221}$

This leaves only the case when l + m is odd, in which case C_4^2 changes the sign of everything, assuring that we are in the representation *E*. We therefore need pairs of wave functions that will rotate into each other under some of the elements. The lowest energy answer is obviously ψ_{211} and ψ_{121} , which clearly will get converted into each other by C_4 rotations.

E:
$$\{\psi_{211}, \psi_{121}\}$$