Solution Set 11

First we need the character table for O_{h}, which is easily determined from the character table for O and that for the inversion group J. They are in the table below.

\boldsymbol{J}	\mathbf{E}	\mathbf{J}
Γ^{+}	1	1
Γ^{-}	1	-1

Next we need
to work out the characters for the $l=$ 6 representation of the rotation group. We will assume that under parity, we are working with a system where the wave function goes like $(-1)^{l}=+1$, so that makes that part of the problem easy. The character of E is the

$\mathcal{O}_{\mathbf{h}}$	\mathbf{E}	$\mathbf{8 C}_{\mathbf{3}}$	$\mathbf{3 C}_{\mathbf{4}}{ }^{\mathbf{}}$	$\mathbf{6} \mathbf{C}_{\mathbf{2}}$	$\mathbf{6} \mathbf{C}_{\mathbf{4}}$	\mathbf{J}	$\mathbf{8 S}_{\mathbf{6}}$	$\mathbf{3 \sigma}$	$\mathbf{6}_{\mathbf{d}}$	$\mathbf{6 S}_{\mathbf{4}}$
${\boldsymbol{\boldsymbol { A } _ { \mathbf { 1 } } { } ^ { + }}}^{1}$	1	1	1	1	1	1	1	1	1	
$\boldsymbol{A}_{\mathbf{2}}{ }^{+}$	1	1	1	-1	-1	1	1	1	-1	-1
\boldsymbol{E}^{+}	2	-1	2	0	0	2	-1	2	0	0
$\boldsymbol{T}_{\mathbf{1}}{ }^{+}$	3	0	-1	-1	1	3	0	-1	-1	1
$\boldsymbol{T}_{\mathbf{2}}{ }^{+}$	3	0	-1	1	-1	3	0	-1	1	-1
$\boldsymbol{A}_{\mathbf{1}}^{-}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\boldsymbol{A}_{\mathbf{2}}^{-}$	1	1	1	-1	-1	-1	-1	-1	1	1
\boldsymbol{E}^{-}	2	-1	2	0	0	-2	1	-2	0	0
$\boldsymbol{T}_{\mathbf{1}}^{-}$	3	0	-1	-1	1	-3	0	1	1	-1
$\boldsymbol{T}_{\mathbf{2}}^{-}$	3	0	-1	1	-1	-3	0	1	-1	1
$\Gamma_{\mathbf{6}}$	13	1	1	1	-1	13	1	1	1	-1

$$
\chi(\alpha)=\frac{\sin \left[\left(l+\frac{1}{2}\right) \alpha\right]}{\sin \left[\frac{1}{2} \alpha\right]}
$$

The results are included in the table, and then just copied for the improper rotations. Noting that the second half always matches the first, we need only look at the + representations, which means we can focus just on O, the first twenty-four elements. Using orthogonality, it's easy to see that the number of copies of A_{1} and A_{2} is $(13 * 1+8+3+6-6) / 24=1$. The number of copies of T_{1} is $(13 * 3-3-6-6) / 24=1$, and of T_{2} is $(13 * 3-3+6+6) / 24=2$. Finally, there is $(13 * 2-8+3 * 2) / 24=1$ copy of E. So in summary,

$$
\Gamma_{6}=A_{1}^{+} \oplus A_{2}^{+} \oplus E^{+} \oplus T_{1}^{+} \oplus 2 T_{2}^{+}
$$

