Physics 745 - Group Theory

Solution Set 13

The original basis is:

$$
\begin{aligned}
& \mathbf{a}=a \hat{\mathbf{x}} \\
& \mathbf{b}=b(\cos \gamma \hat{\mathbf{x}}+\sin \gamma \hat{\mathbf{y}}) \\
& \mathbf{c}=c \hat{\mathbf{z}}
\end{aligned}
$$

An arbitrary element of the translation group is then $n_{1} \mathbf{a}+n_{2} \mathbf{b}+n_{3} \mathbf{c}$, where $\left(n_{1}, n_{2}, n_{3}\right)$ are all integers, or instead we can choose n_{1} and n_{3} to be half-integers, but n_{2} is still an integer.

Imagine switching basis to

$$
\begin{aligned}
& \mathbf{T}_{1}=\frac{1}{2}(\mathbf{a}+\mathbf{c}) \\
& \mathbf{T}_{2}=\mathbf{b} \\
& \mathbf{T}_{3}=\frac{1}{2}(\mathbf{a}-\mathbf{c})
\end{aligned}
$$

Then it is pretty easy to see that $\mathbf{T}_{1} \pm \mathbf{T}_{3}$ yields the two vectors \mathbf{a} and \mathbf{c}. It follows that

$$
n_{1} \mathbf{a}+n_{2} \mathbf{b}+n_{3} \mathbf{c}=n_{1}\left(\mathbf{T}_{1}+\mathbf{T}_{3}\right)+n_{2} \mathbf{T}_{2}+n_{3}\left(\mathbf{T}_{1}-\mathbf{T}_{2}\right)=\left(n_{1}+n_{3}\right) \mathbf{T}_{1}+n_{2} \mathbf{T}_{2}+\left(n_{1}-n_{3}\right) \mathbf{T}_{3}
$$

Given the restrictions on $\left(n_{1}, n_{2}, n_{3}\right)$, it is obvious that all three of $\left(n_{1}+n_{3}, n_{2}, n_{1}-n_{3}\right)$ will be integers, and we have accomplished our goal.

The area of the parallelogram bounded by \mathbf{a} and \mathbf{b} is $a b \sin \gamma$, which is the same as the magnitude of $\mathbf{a} \times \mathbf{b}$. This must then be multiplied by the amount that \mathbf{c} sticks out of the plane of \mathbf{a} and \mathbf{b}, so the total volume is $V=|\mathbf{a} \times \mathbf{b}| c \cos \theta$, where θ is the angle between the vector \mathbf{c} and the perpendicular to \mathbf{a} and \mathbf{b}. A little thought will convince you that this implies $V=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$, with the absolute value taking into account the fact that the cross product $\mathbf{a} \times \mathbf{b}$ might point the opposite direction from \mathbf{c}. We therefore have

$$
\begin{aligned}
V & =|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=|[a b \sin \gamma \hat{\mathbf{z}}] \cdot c \hat{\mathbf{z}}|=a b c \sin \gamma \\
V^{\prime} & =\left|\left(\mathbf{T}_{1} \times \mathbf{T}_{2}\right) \cdot \mathbf{T}_{3}\right|=\frac{1}{4}|[(a \hat{\mathbf{x}}+c \hat{\mathbf{z}}) \times b(\cos \gamma \hat{\mathbf{x}}+\sin \gamma \hat{\mathbf{y}})] \cdot(a \hat{\mathbf{x}}-c \hat{\mathbf{z}})| \\
& =\frac{1}{4} b|(a \sin \gamma \hat{\mathbf{z}}+c \cos \gamma \hat{\mathbf{y}}-c \sin \gamma \hat{\mathbf{x}}) \cdot(a \hat{\mathbf{x}}-c \hat{\mathbf{z}})|=\frac{1}{4} a b c|-\sin \gamma-\sin \gamma| \\
& =\frac{1}{2} a b c \sin \gamma=\frac{1}{2} V
\end{aligned}
$$

The minus sign inside the absolute value just indicates that the basis set $\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}$ is lefthanded. If you want to, this can be fixed in numerous ways, such as changing the sign of \mathbf{T}_{3}. It is also easy to find the volume by taking the determinant of a matrix consisting of the three vectors.

