Physics 745 - Group Theory
 Solution Set 14

We use the general formula given by Dr. Holzwarth to find the scattering amplitude

$$
S(\Delta \mathbf{k})=\frac{(2 \pi)^{3}}{\Omega} \sum_{\mathbf{G}} \delta^{3}(\Delta \mathbf{k}-\mathbf{G}) \sum_{a} F_{a}(\Delta \mathbf{k}) \sum_{\boldsymbol{\sigma}_{a}} e^{i \mathbf{G} \cdot \sigma_{a}}
$$

As inspired in class, we will ignore the delta function, and replace it by something like $\mathcal{I}(\mathbf{G})$. The volume in each case is easily worked out to be

$$
\Omega=\left|\left(\mathbf{T}_{1} \times \mathbf{T}_{2}\right) \cdot \mathbf{T}_{3}\right|=\frac{1}{8} a^{3}|[(\hat{\mathbf{x}}+\hat{\mathbf{y}}) \times(\hat{\mathbf{x}}+\hat{\mathbf{z}})] \cdot(\hat{\mathbf{y}}+\hat{\mathbf{z}})|=\frac{1}{8} a^{3}|[-\hat{\mathbf{y}}-\hat{\mathbf{z}}+\hat{\mathbf{x}}] \cdot(\hat{\mathbf{y}}+\hat{\mathbf{z}})|=\frac{1}{4} a^{3}
$$

We now simply need to do the sums. We will always write $\mathbf{G}=m_{1} \mathbf{G}_{1}+m_{2} \mathbf{G}_{2}+m_{3} \mathbf{G}_{3}$, then we see that

$$
\mathbf{G} \cdot \boldsymbol{\sigma}_{\mathrm{Na}}=0, \quad \mathbf{G} \cdot \boldsymbol{\sigma}_{\mathrm{Cl}}=m_{1} \pi+m_{2} \pi+m_{3} \pi=\pi\left(m_{1}+m_{2}+m_{3}\right)
$$

Substituting into our formulas, we then see that

$$
\begin{aligned}
S(\Delta \mathbf{k}) & =32 \pi^{3} a^{-3} \sum_{\mathbf{G}} \mathcal{I}(\mathbf{G})\left[F_{\mathrm{Na}}(\Delta \mathbf{k}) e^{0}+F_{\mathrm{Cl}}(\Delta \mathbf{k}) e^{i \pi\left(m_{1}+m_{2}+m_{3}\right)}\right] \\
& =32 \pi^{3} a^{-3} \sum_{\mathbf{G}} \mathcal{I}(\mathbf{G})\left[F_{\mathrm{Na}}(\Delta \mathbf{k})+(-1)^{m_{1}+m_{2}+m_{3}} F_{\mathrm{Cl}}(\Delta \mathbf{k})\right]
\end{aligned}
$$

It is possible, but not helpful, to substitute the explicit form for these form factors. There is no reason to expect the sodium and chlorine contributions to cancel when $m_{1}+m_{2}+m_{3}$ is odd, though we might expect these peaks to be suppressed.

For diamond, we find

$$
\mathbf{G} \cdot \boldsymbol{\sigma}_{\mathrm{C} 1}=-\frac{1}{4} \pi\left(m_{1}+m_{2}+m_{3}\right), \quad \mathbf{G} \cdot \boldsymbol{\sigma}_{\mathrm{C} 2}=\frac{1}{4} \pi\left(m_{1}+m_{2}+m_{3}\right)
$$

This yields

$$
\begin{aligned}
S(\Delta \mathbf{k}) & =32 \pi^{3} a^{-3} \sum_{\mathbf{G}} \mathcal{I}(\mathbf{G}) F_{C}(\Delta \mathbf{k})\left[e^{-i \pi\left(m_{1}+m_{2}+m_{3}\right) / 4}+e^{i \pi\left(m_{1}+m_{2}+m_{3}\right) / 4}\right] \\
& =64 \pi^{3} a^{-3} \sum_{\mathbf{G}} \mathcal{I}(\mathbf{G}) F_{C}(\Delta \mathbf{k}) \cos \left[\frac{1}{4} \pi\left(m_{1}+m_{2}+m_{3}\right)\right]
\end{aligned}
$$

This vanishes whenever $m_{1}+m_{2}+m_{3}$ is singly even (i.e., divisible by two but not four).

