Physics 745 - Group Theory Solution Set 15

The crystal momentum **k** forms a cubic lattice. In units of the **G**'s, the basis of the reciprocal lattice, the lines/points listed have the coordinates listed, where *a* denotes an arbitrary real number (though as drawn, *a* would be between 0 and $\frac{1}{2}$).

For each type of point, we have to determine which of the 48 symmetry operations of O_h keep them the same, and then figure out what subgroup this represents. Keep in mind that since adding a basis vector **G** to a reciprocal lattice is physically meaningless, so $\frac{1}{2}$ and $-\frac{1}{2}$ are the same thing.

One thing I found very helpful, in making my own tables, was that the only group with only four elements of which two are mirror planes is $C_{2\nu}$.

- Γ : Clearly unchanged by all symmetry operations, so O_h .
- X: Unchanged by symmetry operations that mix/reverse y and z, and either leaves x alone or reverses it, this is D_{4h} .
- M: Unchanged by symmetry operations that mix/reverse x and y, and either leaves z alone or reverses it, this is D_{4h} .
- R: Unchanged by all symmetry operations, so O_h .
- Δ : Unchanged by all symmetry operations that mix/reverse *y* and *z*, but don't touch *x*, this is C_{4v} .
- Σ: Unchanged by anything that swaps *x* and *y*, or reverses *z*, or both, this is $C_{2\nu}$.
- A: Unchanged by any permutation of x, y, and z, this has a C_3 axis and three mirror planes, so it's $C_{3\nu}$.
- Z: Unchanged by things that reverse x or z (or both), this is C_{2v} .
- S: Unchanged by things that swap *y* and *z*, or reverse *x*, this is C_{2v} .
- T: Unchanged by things that mix/reverse x and y, but don't touch z, this is C_{4y} .

Pt	Coords	Sym
Γ	(0, 0, 0)	O_h
X	$\left(\frac{1}{2},0,0\right)$	D_{4h}
Μ	$\left(\frac{1}{2},\frac{1}{2},0\right)$	D_{4h}
R	$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$	O_h
Δ	(a,0,0)	C_{4v}
Σ	(a,a,0)	$C_{2\mathrm{v}}$
Λ	(a,a,a)	C_{3v}
Ζ	$\left(\frac{1}{2},a,0\right)$	C_{2v}
S	$\left(\frac{1}{2},a,a\right)$	C_{2v}
Т	$\left(\frac{1}{2},\frac{1}{2},a\right)$	C_{4v}