Physics 745 - Group Theory

Solution Set 16

Under each symmetry element we are considering, we need only consider which atoms go to themselves, and then for those atoms, take the trace of the corresponding matrix element. For E, of course, that trace is 9 . Under C_{3} and S_{3}, no atom maps to itself, so the trace is 0 in both cases. Under C_{2}, one atom maps to itself, and the rotation reverses
 two of the components while leaving the third unchanged, so it has trace -1. Under σ_{h}, all the atoms map to themselves, and z is reversed while the other two components remain unchanged, so the trace is 3 . Under σ_{v}, one atom maps to itself, and it reverses only one coordinate, so its trace is 1 .

It isn't that hard to complete the

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}{ }^{\prime}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$A_{1}{ }^{\prime}$	1	1	1	1	1	1
$A_{2}{ }^{\prime}$	1	1	-1	1	1	-1
$A_{1} "$	1	1	1	-1	-1	-1
$A_{2} "$	1	1	-1	-1	-1	1
E	2	-1	0	2	-1	0
E^{\prime}	2	-1	0	-2	1	0
Γ	9	0	-1	3	0	1

The number of copies of each representation is just:

$$
\begin{aligned}
& A_{1}^{\prime}: \quad \frac{1}{12}(1 \cdot 9+3 \cdot 1 \cdot(-1)+1 \cdot 3+3 \cdot 1 \cdot 1)=1 \\
& A_{2}^{\prime}: \quad \frac{1}{12}(1 \cdot 9+3 \cdot(-1) \cdot(-1)+1 \cdot 3+3 \cdot(-1) \cdot 1)=1 \\
& A_{1}^{\prime \prime}: \quad \frac{1}{12}(1 \cdot 9+3 \cdot 1 \cdot(-1)+(-1) \cdot 3+3 \cdot(-1) \cdot 1)=0 \\
& A_{2}^{\prime \prime}: \quad \frac{1}{12}(1 \cdot 9+3 \cdot(-1) \cdot(-1)+(-1) \cdot 3+3 \cdot 1 \cdot 1)=1 \\
& E: \quad \frac{1}{12}(2 \cdot 9+2 \cdot 3)=2 \\
& E^{\prime}: \quad \frac{1}{12}(2 \cdot 9+(-2) \cdot 3)=1
\end{aligned}
$$

We therefore have

$$
\Gamma=A_{1}^{\prime} \oplus A_{2}^{\prime} \oplus A_{2}^{\prime \prime} \oplus 2 E \oplus E^{\prime}
$$

As a check, we note that this has total dimension nine, as it should. According to Tinkham, the rotations and translations correspond to $A_{2}^{\prime} \oplus A_{2}^{\prime \prime} \oplus E \oplus E^{\prime}$. If we "subtract" this from above, we are left with $\Gamma=A_{1}^{\prime} \oplus E$, corresponding to the three true vibrational modes.

Incidentally, according to
http://arxiv.org/ftp/arxiv/papers/0811/0811.4320.pdf
this configuration of carbon atoms is stable, though not the most stable configuration for three atoms.

