Physics 745 - Group Theory Solution Set 17

1. [10] For the group *O*, with character table given on page 329 of Tinkham, work out the breakdown (compatibility) for the tensor product $\Gamma^{A\otimes B}$ for every pair of irreps (15 in all).

For A_1 , the characters of $A_1 \otimes \Gamma$ are obviously the same as Γ , so $A_1 \otimes \Gamma = \Gamma$. This leaves ten other combinations, and the corresponding characters are listed in the table at right. The first four, by inspection, simply give irreps again. For $E \otimes E$, it is not hard to see that it contains *E*, and then what's left over is A_1 and A_2 . For $E \otimes T_1 = E \otimes T_2$, it is easy to see that it is just $T_1 \oplus T_2$. For $T_1 \otimes T_1 = T_2 \otimes T_2$, we can use decomposition rules (if necessary) to see that they contain one copy each of T_1 , T_2 each, and *E*. What's left over is then A_1 . For $T_1 \otimes T_2$, again you have one copy each of T_1 , T_2 and E, and what's left over is A_2 . In summary, we find

Ø	E	8 <i>C</i> ₃	$3C_4^{2}$	6 <i>C</i> ₂	6 <i>C</i> ₄
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	-1	1
T_2	3	0	-1	1	-1
$A_2 \otimes A_2$	1	1	1	1	1
$A_2 \otimes E$	2	-1	2	0	0
$A_2 \otimes T_1$	3	0	-1	1	-1
$A_2 \otimes T_2$	3	0	-1	-1	1
$E \otimes E$	4	1	4	0	0
$E \otimes T_1$	6	0	-2	0	0
$E \otimes T_2$	6	0	-2	0	0
$T_1 \otimes T_1$	9	0	1	1	1
$T_1 \otimes T_2$	9	0	1	-1	-1
$T_2 \otimes T_2$	9	0	1	1	1

$A_{\rm l}\otimes A_{\rm l}=A_{\rm l},$	$A_2 \otimes A_2 = A_1,$
$A_1 \otimes A_2 = A_2,$	$A_2 \otimes E = E,$
$A_1 \otimes E = E,$	$A_2 \otimes T_1 = T_2,$
$A_1 \otimes T_1 = T_1,$	$A_2 \otimes T_2 = T_1,$
$A_1 \otimes T_2 = T_2,$	$E\otimes E=E\oplus A_1\oplus A_2$

$E\otimes T_1=T_1\oplus T_2,$
$E\otimes T_2=T_1\oplus T_2,$
$T_1 \otimes T_1 = T_1 \oplus T_2 \oplus E \oplus A_1,$
$T_1 \otimes T_2 = T_1 \oplus T_2 \oplus E \oplus A_2,$
$T_2 \otimes T_2 = T_1 \oplus T_2 \oplus E \oplus A_1.$