Physics 745 - Group Theory

Solution Set 17

1. [10] For the group O, with character table given on page 329 of Tinkham, work out the breakdown (compatibility) for the tensor product $\Gamma^{A \otimes B}$ for every pair of irreps (15 in all).

For A_{1}, the characters of $A_{1} \otimes \Gamma$ are obviously the same as Γ, so $A_{1} \otimes \Gamma=\Gamma$. This leaves ten other combinations, and the corresponding characters are listed in the table at right. The first four, by inspection, simply give irreps again. For $E \otimes E$, it is not hard to see that it contains E, and then what's left over is A_{1} and A_{2}. For $E \otimes T_{1}=E \otimes T_{2}$, it is easy to see that it is just $T_{1} \oplus T_{2}$. For $T_{1} \otimes T_{1}=T_{2} \otimes T_{2}$, we can use decomposition rules (if necessary) to see that they contain one copy each of T_{1}, T_{2} each, and E. What's left over is then A_{1}. For $T_{1} \otimes T_{2}$, again you have one copy each of T_{1}, T_{2} and E, and what's left over is A_{2}. In summary, we find

$$
\begin{array}{lll}
A_{1} \otimes A_{1}=A_{1}, & A_{2} \otimes A_{2}=A_{1}, & E \otimes T_{1}=T_{1} \oplus T_{2}, \\
A_{1} \otimes A_{2}=A_{2}, & A_{2} \otimes E=E, & E \otimes T_{2}=T_{1} \oplus T_{2}, \\
A_{1} \otimes E=E, & A_{2} \otimes T_{1}=T_{2}, & T_{1} \otimes T_{1}=T_{1} \oplus T_{2} \oplus E \oplus A_{1}, \\
A_{1} \otimes T_{1}=T_{1}, & A_{2} \otimes T_{2}=T_{1}, & T_{1} \otimes T_{2}=T_{1} \oplus T_{2} \oplus E \oplus A_{2}, \\
A_{1} \otimes T_{2}=T_{2}, & E \otimes E=E \oplus A_{1} \oplus A_{2}, & T_{2} \otimes T_{2}=T_{1} \oplus T_{2} \oplus E \oplus A_{1} .
\end{array}
$$

