Physics 745 - Group Theory

Solution Set 19

1. [10] In the defining representation, the four generators of the group $U(2)$ can be given by

$$
T_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad T_{2}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad T_{4}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) [2] These generators are orthogonal, but not orthonormal. Assume the even ones T_{2} and T_{4} are normalized correctly, fix the other two by multiplying by an appropriate constant such that they will be orthonormal as well.

Our generators are supposed to have the normalization property $\operatorname{tr}\left(T_{a} T_{b}\right)=\lambda \delta_{a b}$. It isn't hard to see that you get zero if you pick $a \neq b$, but if you check the other cases, you find $\operatorname{tr}\left(T_{1}^{2}\right)=\operatorname{tr}\left(T_{3}^{2}\right)=1$, while $\operatorname{tr}\left(T_{2}^{2}\right)=\operatorname{tr}\left(T_{4}^{2}\right)=\frac{1}{2}$. To fix this, the easiest thing to do is to let

$$
T_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad T_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

(b) [4] Using your "fixed" generators, work out all commutators $\left[T_{a}, T_{b}\right]$ for every pair $\boldsymbol{a}<\boldsymbol{b}$ (6 total). Write your answer in terms of other generators.

This is pretty straightforward. I sill skip the work of actually doing the commutations, we simply write out $\left[T_{a}, T_{b}\right]=T_{a} T_{b}-T_{b} T_{a}$ and simplify. We find

$$
\begin{array}{ll}
{\left[T_{1}, T_{2}\right]=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=i \frac{1}{\sqrt{2}} T_{4},} & {\left[T_{2}, T_{3}\right]=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=i \frac{1}{\sqrt{2}} T_{4},} \\
{\left[T_{1}, T_{3}\right]=0,} & {\left[T_{2}, T_{4}\right]=\frac{1}{2}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=i \frac{1}{\sqrt{2}}\left(T_{1}-T_{3}\right),} \\
{\left[T_{1}, T_{4}\right]=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=-i \frac{1}{\sqrt{2}} T_{2}} & {\left[T_{3}, T_{4}\right]=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=i \frac{1}{\sqrt{2}} T_{2} .}
\end{array}
$$

(c) [4] Find all the non-zero structure constants $\boldsymbol{f}_{\text {abc }}$ for this group. You may use the complete anti-symmetry of $\boldsymbol{f}_{a b c}$ to save work or check your answers, if you wish.

The nonzero ones can be spotted by keeping in mind that $\left[T_{a}, T_{b}\right]=i \sum_{c} f_{a b c} T_{c}$.
We will take advantage of the anti-symmetry on the two first indices only, and use antisymmetry on all three as a check. By inspection, we see

$$
f_{124}=-f_{214}=f_{241}=-f_{421}=-f_{142}=f_{412}=\frac{1}{\sqrt{2}}=f_{234}=-f_{324}=-f_{243}=f_{423}=f_{342}=-f_{432}
$$

It is clear that the results came out completely anti-symmetric.

