Physics 745 - Group Theory

Solution Set 20

1. [10] Prove, using only the commutation relations, the first three identities (2.9) from the notes, namely

$$
\left[\mathbf{T}^{2}, T_{a}\right]=0, \quad\left[T_{3}, T_{ \pm}\right]= \pm T_{ \pm}, \quad \text { and } \quad \mathbf{T}^{2}=T_{\mp} T_{ \pm}+T_{3}^{2} \pm T_{3}
$$

These are, in fact, three, two, and two identities respectively. On the first one, it is very helpful to use the identity $\left[A^{2}, B\right]=A[A, B]+[A, B] A$.

It is simplest to write out the commutation relations we need to prove, and then work them out. The first one is the hardest.

$$
\begin{aligned}
{\left[\mathbf{T}^{2}, T_{1}\right] } & =\left[T_{1}^{2}+T_{2}^{2}+T_{3}^{2}, T_{1}\right] \\
& =T_{1}\left[T_{1}, T_{1}\right]+\left[T_{1}, T_{1}\right] T_{1}+T_{2}\left[T_{2}, T_{1}\right]+\left[T_{2}, T_{1}\right] T_{2}+T_{3}\left[T_{3}, T_{1}\right]+\left[T_{3}, T_{1}\right] T_{3} \\
& =0+0-i T_{2} T_{3}-i T_{3} T_{2}+i T_{3} T_{2}+i T_{2} T_{3}=0, \\
{\left[\mathbf{T}^{2}, T_{2}\right] } & =\left[T_{1}^{2}+T_{2}^{2}+T_{3}^{2}, T_{2}\right] \\
& =T_{1}\left[T_{1}, T_{2}\right]+\left[T_{1}, T_{2}\right] T_{1}+T_{2}\left[T_{2}, T_{2}\right]+\left[T_{2}, T_{2}\right] T_{2}+T_{3}\left[T_{3}, T_{2}\right]+\left[T_{3}, T_{2}\right] T_{3} \\
& =i T_{1} T_{3}+i T_{3} T_{1}+0+0-i T_{3} T_{1}-i T_{1} T_{3}=0, \\
{\left[\mathbf{T}^{2}, T_{3}\right] } & =\left[T_{1}^{2}+T_{2}^{2}+T_{3}^{2}, T_{3}\right] \\
& =T_{1}\left[T_{1}, T_{3}\right]+\left[T_{1}, T_{3}\right] T_{1}+T_{2}\left[T_{2}, T_{3}\right]+\left[T_{2}, T_{3}\right] T_{2}+T_{3}\left[T_{3}, T_{3}\right]+\left[T_{3}, T_{3}\right] T_{3} \\
& =-i T_{1} T_{2}-i T_{2} T_{1}+i T_{2} T_{1}+i T_{1} T_{2}+0+0=0 .
\end{aligned}
$$

The next two aren't nearly as bad.

$$
\begin{aligned}
& {\left[T_{3}, T_{+}\right]=\left[T_{3}, T_{1}+i T_{2}\right]=i T_{2}-i^{2} T_{1}=T_{+},} \\
& {\left[T_{3}, T_{-}\right]=\left[T_{3}, T_{1}-i T_{2}\right]=i T_{2}+i^{2} T_{1}=-T_{-} .}
\end{aligned}
$$

The last one isn't too difficult either.

$$
\begin{aligned}
T_{\mp} T_{ \pm}+T_{3}^{2} \pm T_{3} & =\left(T_{1} \mp i T_{2}\right)\left(T_{1} \pm i T_{2}\right)+T_{3}^{2} \pm T_{3}=T_{1}^{2} \mp i T_{2} T_{1} \pm i T_{1} T_{2}+T_{2}^{2}+T_{3}^{2} \pm T_{3} \\
& =T_{1}^{2} \pm i\left[T_{1}, T_{2}\right]+T_{2}^{2}+T_{3}^{2} \pm T_{3}=\mathbf{T}^{2} \pm i^{2} T_{3} \pm T_{3}=\mathbf{T}^{2}
\end{aligned}
$$

Done!

