Physics 745 - Group Theory

Solution Set 21

1. [10] In class (or the notes), I gave explicit instructions for how to find the irreducible representations $T_{a}^{(j)}$. To demonstrate that you understand this, write explicitly $T_{3}^{(2)}, T_{ \pm}^{(2)}, T_{1}^{(2)}$, and $T_{2}^{(2)}$ for the $\boldsymbol{j}=2$ irrep. Check that it is correct by computing

$$
\mathbf{T}^{2}=T_{1}^{2}+T_{2}^{2}+T_{3}^{2}
$$

and show that it has the correct value.
The matrix T_{3} is diagonal and takes on values from $+j$ to $-j$, so it is

$$
T_{3}^{(2)}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right)
$$

The matrix $T_{+}^{(2)}$ has matrix elements $\left\langle m^{\prime}\right| T_{+}^{(2)}|m\rangle=\delta_{m^{\prime}, m+1} \sqrt{j^{2}+j-m^{2}-m}$, where $j=2$, so this is $\sqrt{6-m^{2}-m}$ in the diagonal just above the main diagonal. We then just Hermitian conjugate it to get $T_{-}^{(2)}$:

$$
T_{+}^{(2)}=\left(\begin{array}{ccccc}
0 & \sqrt{4} & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & \sqrt{6} & 0 \\
0 & 0 & 0 & 0 & \sqrt{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad T_{-}^{(2)}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\sqrt{4} & 0 & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & \sqrt{4} & 0
\end{array}\right)
$$

We can then get T_{1} and T_{2} from $T_{1}=\frac{1}{2}\left(T_{+}+T_{-}\right)$and $T_{2}=\frac{1}{2} i\left(T_{-}-T_{+}\right)$, which works out to

$$
T_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
0 & \sqrt{\frac{3}{2}} & 0 & \sqrt{\frac{3}{2}} & 0 \\
0 & 0 & \sqrt{\frac{3}{2}} & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccccc}
0 & -i & 0 & 0 & 0 \\
i & 0 & -i \sqrt{\frac{3}{2}} & 0 & 0 \\
0 & i \sqrt{\frac{3}{2}} & 0 & -i \sqrt{\frac{3}{2}} & 0 \\
0 & 0 & i \sqrt{\frac{3}{2}} & 0 & -i \\
0 & 0 & 0 & i & 0
\end{array}\right)
$$

We still have to check this, which is done by working out \mathbf{T}^{2}.

$$
\begin{aligned}
\mathbf{T}^{2} & =T_{1}^{2}+T_{2}^{2}+T_{3}^{2} \\
& =\left(\begin{array}{ccccc}
1 & 0 & \sqrt{\frac{3}{2}} & 0 & 0 \\
0 & \frac{5}{2} & 0 & \frac{3}{2} & 0 \\
\sqrt{\frac{3}{2}} & 0 & 3 & 0 & \sqrt{\frac{3}{2}} \\
0 & \frac{3}{2} & 0 & \frac{5}{2} & 0 \\
0 & 0 & \sqrt{\frac{3}{2}} & 0 & 1
\end{array}\right)+\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\
0 & \frac{5}{2} & 0 & -\frac{3}{2} & 0 \\
-\sqrt{\frac{3}{2}} & 0 & 3 & 0 & -\sqrt{\frac{3}{2}} \\
0 & -\frac{3}{2} & 0 & \frac{5}{2} & 0 \\
0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 1
\end{array}\right)+\left(\begin{array}{lllll}
4 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
6 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 6
\end{array}\right)
\end{aligned}
$$

It should be a constant, and equal to $2^{2}+2=6$, and it does work out to this, so we are done.
2. [5] This problem has to do with breaking down an unknown representation of $S O(3)$ into irreps.
(a) [2] Using the highest weight decomposition described in the notes, work out the decomposition of the defining generators of $S O(3)$, given in equation (2.5):

$$
T_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

According to the highest weight decomposition algorithm, we first need to find the eigenvalues of T_{3}, which we do by solving the characteristic equation $\left|T_{3}-\lambda \mathbf{1}\right|=0$, so

$$
0=\left|\begin{array}{ccc}
-\lambda & -i & 0 \\
i & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=-\lambda^{3}-i^{2} \lambda=\lambda\left(1-\lambda^{2}\right)
$$

The three eigenvalues are then $+1,0$, and -1 . The highest weight is +1 , which implies this must contain a copy of the representation (1). This representation should have eigenvalues $+1,0$, and -1 , so indeed, this is the representation. Note that we didn't need the other two matrices, we need only look at T_{3} to determine everything.
(b) [3] A certain representation of $S O(3)$ has generators given by

$$
T_{1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right), \quad T_{2}=\frac{i}{2}\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
-1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right), \quad T_{3}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) .
$$

How does this break down into irreps?

We proceed exactly as before. It helps that the matrix is block diagonal, but even without that, it isn't too bad

$$
\begin{aligned}
& 0=\left|\begin{array}{cccc}
\frac{1}{2}-\lambda & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2}-\lambda & 0 & 0 \\
0 & 0 & -\frac{1}{2}-\lambda & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & -\frac{1}{2}-\lambda
\end{array}\right| \\
& =\left(\frac{1}{2}-\lambda\right)\left|\begin{array}{ccc}
\frac{1}{2}-\lambda & 0 & 0 \\
0 & -\frac{1}{2}-\lambda & \frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}-\lambda
\end{array}\right|-\frac{1}{2}\left|\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2}-\lambda & \frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}-\lambda
\end{array}\right| \\
& =\left[\left(\frac{1}{2}-\lambda\right)^{2}-\left(\frac{1}{2}\right)^{2}\right]\left|\begin{array}{cc}
-\frac{1}{2}-\lambda & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}-\lambda
\end{array}\right|=\left[\left(\frac{1}{2}-\lambda\right)^{2}-\left(\frac{1}{2}\right)^{2}\right]\left[\left(-\frac{1}{2}-\lambda\right)^{2}-\left(\frac{1}{2}\right)^{2}\right] \\
& =\left(\lambda^{2}-\lambda\right)\left(\lambda^{2}+\lambda\right)=\lambda^{2}(\lambda-1)(\lambda+1)
\end{aligned}
$$

This has roots of $+1,-1,0$ and 0 . Since the highest eigenvalue is +1 , it must once again include the (1) representation, which accounts for the eigenvalues $+1,0$, and -1 . This leaves the 0 eigenvalue unaccounted for, but this is just the eigenvalue for the (0) representation, so our final answer is $(1) \oplus(0)$.

